井冈山市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
井冈山市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
井冈山市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
井冈山市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
井冈山市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

井冈山市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知向量=(1,2),=(x,4),若,则x=( ) A 4 B 4 C 2 D 22 如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )ABCD3 在中,其面积为,则等于( )A B C D4 满足下列条件的函数中,为偶函数的是( )A. B. C. D.【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.5 设集合( )ABCD 6 已知d为常数,p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p是q的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7 若函数的定义域是,则函数的定义域是( )A B C D8 满足集合M1,2,3,4,且M1,2,4=1,4的集合M的个数为( )A1B2C3D49 已知双曲线C 的一个焦点与抛物线y2=8x的焦点相同,且双曲线C过点P(2,0),则双曲线C的渐近线方程是( )Ay=xBy=Cxy=2xDy=x10幂函数y=f(x)的图象经过点(2,),则满足f(x)=27的x的值是( )ABC3D311过点P(2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有( )A3条B2条C1条D0条12数列an是等差数列,若a1+1,a3+2,a5+3构成公比为q的等比数列,则q=( )A1B2C3D4二、填空题13在极坐标系中,直线l的方程为cos=5,则点(4,)到直线l的距离为14设满足约束条件,则的最大值是_15若在圆C:x2+(ya)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是16向量=(1,2,2),=(3,x,y),且,则xy=17若P(1,4)为抛物线C:y2=mx上一点,则P点到该抛物线的焦点F的距离为|PF|=18函数y=sin2x2sinx的值域是y三、解答题19设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方程为2cos2+3=0,曲线C2的参数方程为(t是参数,m是常数)()求C1的直角坐标方程和C2的普通方程;()若C1与C2有两个不同的公共点,求m的取值范围 20如图,在四边形中, 四边形绕着直线旋转一周.(1)求所成的封闭几何体的表面积;(2)求所成的封闭几何体的体积.21如图所示,在正方体中(1)求与所成角的大小;(2)若、分别为、的中点,求与所成角的大小22已知f(x)=x2+ax+a(a2,xR),g(x)=ex,(x)=()当a=1时,求(x)的单调区间;()求(x)在x1,+)是递减的,求实数a的取值范围;()是否存在实数a,使(x)的极大值为3?若存在,求a的值;若不存在,请说明理由 23ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a()求;()若c2=b2+a2,求B24已知函数f(x)=lnx+ax2+b(a,bR)()若曲线y=f(x)在x=1处的切线为y=1,求函数f(x)的单调区间;()求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+)上不单调;()若点A(x1,y1),B(x2,y2)(x2x10)是曲线f(x)上的两点,试探究:当a0时,是否存在实数x0(x1,x2),使直线AB的斜率等于f(x0)?若存在,给予证明;若不存在,说明理由 井冈山市第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】: 解:,42x=0,解得x=2故选:D2 【答案】C【解析】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为故选:C3 【答案】B【解析】试题分析:由题意得,三角形的面积,所以,又,所以,又由余弦定理,可得,所以,则,故选B考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中利用比例式的性质,得到是解答的关键,属于中档试题4 【答案】D.【解析】5 【答案】B【解析】解:集合A中的不等式,当x0时,解得:x;当x0时,解得:x,集合B中的解集为x,则AB=(,+)故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键6 【答案】A【解析】解:p:对于任意nN*,an+2an+1=d;q:数列 an是公差为d的等差数列,则p:nN*,an+2an+1d;q:数列 an不是公差为d的等差数列,由pq,即an+2an+1不是常数,则数列 an就不是等差数列,若数列 an不是公差为d的等差数列,则不存在nN*,使得an+2an+1d,即前者可以推出后者,前者是后者的充分条件,即后者可以推不出前者,故选:A【点评】本题考查等差数列的定义,是以条件问题为载体的,这种问题注意要从两个方面入手,看是不是都能够成立7 【答案】B 【解析】8 【答案】B【解析】解:M1,2,4=1,4,1,4是M中的元素,2不是M中的元素M1,2,3,4,M=1,4或M=1,3,4故选:B9 【答案】A【解析】解:抛物线y2=8x的焦点(2,0),双曲线C 的一个焦点与抛物线y2=8x的焦点相同,c=2,双曲线C过点P(2,0),可得a=2,所以b=2双曲线C的渐近线方程是y=x故选:A【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查10【答案】A【解析】解:设幂函数为y=x,因为图象过点(2,),所以有=(2),解得:=3所以幂函数解析式为y=x3,由f(x)=27,得:x3=27,所以x=故选A11【答案】C【解析】解:假设存在过点P(2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则即2a2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=ab=8,即ab=16,联立,解得:a=4,b=4直线l的方程为:,即xy+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题12【答案】A【解析】解:设等差数列an的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3化简得:(2d+1)2=0,即d=q=1故选:A【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题二、填空题13【答案】3 【解析】解:直线l的方程为cos=5,化为x=5点(4,)化为点到直线l的距离d=52=3故答案为:3【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题14【答案】【解析】试题分析:画出可行域如下图所示,由图可知目标函数在点处取得最大值为.考点:线性规划15【答案】3a1或1a3 【解析】解:根据题意知:圆x2+(ya)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,21|a|2+1,3a1或1a3故答案为:3a1或1a3【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(ya)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题16【答案】12 【解析】解:向量=(1,2,2),=(3,x,y),且,=,解得x=6,y=6,xy=66=12故答案为:12【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目17【答案】5 【解析】解:P(1,4)为抛物线C:y2=mx上一点,即有42=m,即m=16,抛物线的方程为y2=16x,焦点为(4,0),即有|PF|=5故答案为:5【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题18【答案】1,3 【解析】解:函数y=sin2x2sinx=(sinx1)21,1sinx1,0(sinx1)24,1(sinx1)213函数y=sin2x2sinx的值域是y1,3故答案为1,3【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键三、解答题19【答案】 【解析】解:(I)曲线C1的极坐标方程为2cos2+3=0,即2(cos2sin2)+3=0,可得直角坐标方程:x2y2+3=0曲线C2的参数方程为(t是参数,m是常数),消去参数t可得普通方程:x2ym=0(II)把x=2y+m代入双曲线方程可得:3y2+4my+m2+3=0,由于C1与C2有两个不同的公共点,=16m212(m2+3)0,解得m3或m3,m3或m3【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与双曲线的位置关系,考查了推理能力与计算能力,属于中档题 20【答案】(1);(2)【解析】考点:旋转体的概念;旋转体的表面积、体积.21【答案】(1);(2)【解析】试题解析:(1)连接,由是正方体,知为平行四边形,所以,从而与所成的角就是与所成的角由可知,即与所成的角为考点:异面直线的所成的角【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所成角的概念、三角形中位线与正方形的性质、正方体的结构特征等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,本题的解答中根据异面直线所成角的概念确定异面直线所成的角是解答的关键,属于中档试题22【答案】 【解析】解:(I)当a=1时,(x)=(x2+x+1)ex(x)=ex(x2+x)当(x)0时,0x1;当(x)0时,x1或x0(x)单调减区间为(,0),(1,+),单调增区间为(0,1);(II)(x)=exx2+(2a)x(x)在x1,+)是递减的,(x)0在x1,+)恒成立,x2+(2a)x0在x1,+)恒成立,2ax在x1,+)恒成立,2a1a1a2,1a2;(III)(x)=(2x+a)exex(x2+ax+a)=exx2+(2a)x令(x)=0,得x=0或x=2a:由表可知,(x)极大=(2a)=(4a)ea2设(a)=(4a)ea2,(a)=(3a)ea20,(a)在(,2)上是增函数,(a)(2)=23,即(4a)ea23,不存在实数a,使(x)极大值为3 23【答案】 【解析】解:()由正弦定理得,sin2AsinB+sinBcos2A=sinA,即sinB(sin2A+cos2A)=sinAsinB=sinA, =()由余弦定理和C2=b2+a2,得cosB=由()知b2=2a2,故c2=(2+)a2,可得cos2B=,又cosB0,故cosB=所以B=45【点评】本题主要考查了正弦定理和余弦定理的应用解题的过程主要是利用了正弦定理和余弦定理对边角问题进行了互化24【答案】 【解析】解:()由已知得解得此时,(x0)令f(x)=0,得x=1,f(x),f(x)的变化情况如下表:x(0,1)1(1,+)f(x)+0f(x)单调递增极大值单调递减所以函数f(x)的增区间为(0,1),减区间为(1,+)()(x0)(1)当a0时,f(x)0恒成立,此时,函数f(x)在区间(0,+)上单调递增,不合题意,舍去(2)当a0时,令f(x)=0,得,f(x),f(x)的变化情况如下表:x(0,)(,+)f(x)+0f(x)单调递增极大值单调递减所以函数f(x)的增区间为(0,),减区间为(,+)要使函数f(x)在区间(m,+)上不单调,须且只须m,即所以对任意给定的正数m,只须取满足的实数a,就能使得函数f(x)在区间(m,+)上不单调()存在实数x0(x1,x2),使直线AB的斜率等于f(x0)证明如下:令g(x)=lnxx+1(x0),则,易得g(x)在x=1处取到最大值,且最大值g(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论