




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平桂区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 下列关系正确的是( )A10,1B10,1C10,1D10,12 已知 m、n 是两条不重合的直线,、是三个互不重合的平面,则下列命题中 正确的是( )A若 m,n,则 mnB若,则 C若m,n,则 mnD若 m,m,则 3 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )Ai7?Bi15?Ci15?Di31?4 如图,ABC所在平面上的点Pn(nN*)均满足PnAB与PnAC的面积比为3;1, =(2xn+1)(其中,xn是首项为1的正项数列),则x5等于( )A65B63C33D315 “”是“圆关于直线成轴对称图形”的( )A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件【命题意图】本题考查圆的一般方程、圆的几何性质、常用逻辑等知识,有一定的综合性,突出化归能力的考查,属于中等难度6 过点(1,3)且平行于直线x2y+3=0的直线方程为( )Ax2y+7=0B2x+y1=0Cx2y5=0D2x+y5=07 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A BC D【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力8 线段AB在平面内,则直线AB与平面的位置关系是( )AABBABC由线段AB的长短而定D以上都不对9 在等差数列an中,a1=2,a3+a5=8,则a7=( )A3B6C7D810设函数,若对任意,都存在,使得,则实数的最大值为( )A B C. D411设Sn为等比数列an的前n项和,已知3S3=a42,3S2=a32,则公比q=( )A3B4C5D612如图,在等腰梯形ABCD中,AB=2DC=2,DAB=60,E为AB的中点,将ADE与BEC分别沿ED、EC向上折起,使A、B重合于点P,则PDCE三棱锥的外接球的体积为( )ABCD二、填空题13设为锐角, =(cos,sin),=(1,1)且=,则sin(+)= 14设抛物线的焦点为,两点在抛物线上,且,三点共线,过的中点作轴的垂线与抛物线在第一象限内交于点,若,则点的横坐标为 .15为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()ta(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室 16函数图象上不同两点处的切线的斜率分别是,规定(为线段AB的长度)叫做曲线在点A与点B之间的“弯曲度”,给出以下命题:函数图象上两点A与B的横坐标分别为1和2,则;存在这样的函数,图象上任意两点之间的“弯曲度”为常数;设点A,B是抛物线上不同的两点,则;设曲线(e是自然对数的底数)上不同两点,若恒成立,则实数t的取值范围是.其中真命题的序号为_.(将所有真命题的序号都填上)17若命题“xR,|x2|kx+1”为真,则k的取值范围是18在棱长为1的正方体ABCDA1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动现有下列命题:若点P总保持PABD1,则动点P的轨迹所在曲线是直线;若点P到点A的距离为,则动点P的轨迹所在曲线是圆;若P满足MAP=MAC1,则动点P的轨迹所在曲线是椭圆;若P到直线BC与直线C1D1的距离比为1:2,则动点P的轨迹所在曲线是双曲线;若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在曲线是抛物丝其中真命题是(写出所有真命题的序号)三、解答题19已知函数f(x)=(1)求f(f(2);(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(4,0)上的值域20(本小题满分12分)如图,四棱锥中,底面是边长为的菱形,且,侧面为等边三角形,且与底面垂直,为的中点()求证:;()求直线与平面所成角的正弦值21(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由22已知向量=(x, y),=(1,0),且(+)()=0(1)求点Q(x,y)的轨迹C的方程;(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,1),当|AM|=|AN|时,求实数m的取值范围23(本小题满分10分)选修44:坐标系与参数方程以坐标原点为极点,以轴的非负半轴为极轴建立极坐标系,已知曲线的参数方程为(为参数,),直线的参数方程为(为参数)(I)点在曲线上,且曲线在点处的切线与直线垂直,求点的极坐标;(II)设直线与曲线有两个不同的交点,求直线的斜率的取值范围【命题意图】本题考查圆的参数方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力24一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形(1)求该几何体的体积;111(2)求该几何体的表面积平桂区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:由于10,1,10,1,故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键2 【答案】C【解析】解:对于A,若 m,n,则 m与n相交、平行或者异面;故A错误;对于B,若,则 与可能相交,如墙角;故B错误;对于C,若m,n,根据线面垂直的性质定理得到 mn;故C正确;对于D,若 m,m,则 与可能相交;故D错误;故选C【点评】本题考查了空间线线关系面面关系的判断;熟练的运用相关的定理是关键3 【答案】C【解析】解:模拟执行程序框图,可得S=2,i=0不满足条件,S=5,i=1不满足条件,S=8,i=3不满足条件,S=11,i=7不满足条件,S=14,i=15由题意,此时退出循环,输出S的值即为14,结合选项可知判断框内应填的条件是:i15?故选:C【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S,i的值是解题的关键,属于基本知识的考查4 【答案】 D【解析】解:由=(2xn+1),得+(2xn+1)=,设,以线段PnA、PnD作出图形如图,则,则,即xn+1=2xn+1,xn+1+1=2(xn+1),则xn+1构成以2为首项,以2为公比的等比数列,x5+1=224=32,则x5=31故选:D【点评】本题考查了平面向量的三角形法则,考查了数学转化思想方法,训练了利用构造法构造等比数列,考查了计算能力,属难题5 【答案】【解析】6 【答案】A【解析】解:由题意可设所求的直线方程为x2y+c=0过点(1,3)代入可得16+c=0 则c=7x2y+7=0故选A【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x2y+c=07 【答案】C【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,且平面,如图所示,所以此四棱锥表面积为 ,故选C8 【答案】A【解析】解:线段AB在平面内,直线AB上所有的点都在平面内,直线AB与平面的位置关系:直线在平面内,用符号表示为:AB故选A【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力公理一:如果一条线上的两个点在平面上则该线在平面上9 【答案】B【解析】解:在等差数列an中a1=2,a3+a5=8,2a4=a3+a5=8,解得a4=4,公差d=,a7=a1+6d=2+4=6故选:B10【答案】A111.Com【解析】试题分析:设的值域为,因为函数在上的值域为,所以,因此至少要取遍中的每一个数,又,于是,实数需要满足或,解得考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。首先求出,再利用转化思想将命题条件转化为,进而转化为至少要取遍中的每一个数,再利用数形结合思想建立不等式组:或,从而解得11【答案】B【解析】解:Sn为等比数列an的前n项和,3S3=a42,3S2=a32,两式相减得3a3=a4a3,a4=4a3,公比q=4故选:B12【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为1,故外接球半径为,外接球的体积为,故选C【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题二、填空题13【答案】:【解析】解:=cossin=,1sin2=,得sin2=,为锐角,cossin=(0,),从而cos2取正值,cos2=,为锐角,sin(+)0,sin(+)=故答案为:14【答案】2 【解析】由题意,得,准线为,设、,直线的方程为,代入抛物线方程消去,得,所以,又设,则,所以,所以因为,解得,所以点的横坐标为215【答案】0.6【解析】解:当t0.1时,可得1=()0.1a0.1a=0a=0.1由题意可得y0.25=,即()t0.1,即t0.1解得t0.6,由题意至少需要经过0.6小时后,学生才能回到教室故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力易错点:只单纯解不等式,而忽略题意,得到其他错误答案16【答案】【解析】试题分析:错:对:如;对;错;,因为恒成立,故.故答案为.111考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.17【答案】1,) 【解析】解:作出y=|x2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k1,)故答案为:1,)【点评】本题考查全称命题,考查数形结合的数学思想,比较基础18【答案】 【解析】解:对于,BD1面AB1C,动点P的轨迹所在曲线是直线B1C,正确;对于,满足到点A的距离为的点集是球,点P应为平面截球体所得截痕,即轨迹所在曲线为圆,正确;对于,满足条件MAP=MAC1 的点P应为以AM为轴,以AC1 为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,错误;对于,P到直线C1D1 的距离,即到点C1的距离与到直线BC的距离比为2:1,动点P的轨迹所在曲线是以C1 为焦点,以直线BC为准线的双曲线,正确;对于,如图建立空间直角坐标系,作PEBC,EFAD,PGCC1,连接PF,设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2y2=1,P点轨迹所在曲线是双曲线,错误故答案为:【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题三、解答题19【答案】 【解析】解:(1)函数f(x)=f(2)=2+2=0,f(f(2)=f(0)=0.3分(2)函数的图象如图:单调增区间为(,1),(0,+)(开区间,闭区间都给分)由图可知:f(4)=2,f(1)=1,函数f(x)在区间(4,0)上的值域(2,112分20【答案】 【解析】由底面为菱形且,是等边三角形,取中点,有, 为二面角的平面角, 分别以所在直线为轴,建立空间直角坐标系如图, 则 3分()由为中点, 6分()由, 平面的法向量可取 9分, 设直线与平面所成角为,则 即直线与平面所成角的正弦值为 12分21【答案】(1);(2)万;(3).【解析】(3)由图可得月均用水量不低于2.5吨的频率为:;月均用水量低于3吨的频率为:;则吨1考点:频率分布直方图 22【答案】 【解析】解:(1)由题意向量=(x, y),=(1,0),且(+)()=0,化简得,Q点的轨迹C的方程为(2)由得(3k2+1)x2+6mkx+3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2.2《资源枯竭地区的发展-以德国鲁尔区为例》教学设计2024-2025学年高中地理鲁教版(2019)选择性必修二
- 一、简单电现象说课稿-2025-2026学年初中物理九年级全一册北京课改版
- 六年级体育上册 第二十八课 跳长绳说课稿
- 河南省濮阳市范县白衣阁第二中学初中信息技术 3.2.1《windows初步》说课稿 人教新课标版
- 高校竞聘考试题目及答案
- 2025学校水果采购合同
- 中高职衔接培养中实践教学环节的优化路径
- 2025娱乐公司高层管理合同
- 项目管理信息化对文体场馆建设的推动作用
- 电气类专业课程体系与行业需求对接机制构建
- 电梯从业证考试试题及答案解析
- 第九讲 全面依法治国PPT习概论2023优化版教学课件
- 新媒体文案写作PPT完整全套教学课件
- 《细胞》PPT课件-完美版
- 托育园厨师安全工作责任书
- 《编程猫系列》第1课-Hello-编程猫(课件)
- GB 16899-2011自动扶梯和自动人行道的制造与安装安全规范
- 非典型骨折课件
- 封闭区倒塌围墙修复施工方案
- 户口本翻译样本-Word范文-Word范文
- 企业融资计划书2022
评论
0/150
提交评论