淄川区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
淄川区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
淄川区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
淄川区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
淄川区三中2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

淄川区三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在ABC中,已知a=2,b=6,A=30,则B=( )A60B120C120或60D452 已知函数f(x)=若关于x的方程f(x)=k有两个不同的实根,则实数k的取值范围是( )A(0,1)B(1,+)C(1,0)D(,1)3 若直线:圆:交于两点,则弦长的最小值为( )A B C D4 函数y=sin(2x+)图象的一条对称轴方程为( )Ax=Bx=Cx=Dx=5 集合,则,的关系( )A B C D6 一个多面体的直观图和三视图如图所示,点是边上的动点,记四面体的体积为,多面体的体积为,则( )1111A B C D不是定值,随点的变化而变化7 有以下四个命题:若=,则x=y若lgx有意义,则x0若x=y,则=若xy,则 x2y2则是真命题的序号为( )ABCD8 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等据此可判断丙必定值班的日期是( )A2日和5日B5日和6日C6日和11日D2日和11日9 在中,内角,所对的边分别是,已知,则( )A B C. D10定义在R上的偶函数在0,7上是增函数,在7,+)上是减函数,又f(7)=6,则f(x)( )A在7,0上是增函数,且最大值是6B在7,0上是增函数,且最小值是6C在7,0上是减函数,且最小值是6D在7,0上是减函数,且最大值是611已知直线的参数方程为(为参数,为直线的倾斜角),以原点O为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆的两个交点为,当最小时,的值为( )A B C D12在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A,乙比甲成绩稳定B,甲比乙成绩稳定C,甲比乙成绩稳定D,乙比甲成绩稳定二、填空题13抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)14定积分sintcostdt=15已知是定义在上函数,是的导数,给出结论如下:若,且,则不等式的解集为; 若,则;若,则;若,且,则函数有极小值;若,且,则函数在上递增其中所有正确结论的序号是 16给出下列四个命题:函数y=|x|与函数表示同一个函数;奇函数的图象一定通过直角坐标系的原点;函数y=3x2+1的图象可由y=3x2的图象向上平移1个单位得到;若函数f(x)的定义域为0,2,则函数f(2x)的定义域为0,4;设函数f(x)是在区间a,b上图象连续的函数,且f(a)f(b)0,则方程f(x)=0在区间a,b上至少有一实根;其中正确命题的序号是(填上所有正确命题的序号)17在(x2)9的二项展开式中,常数项的值为18甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为三、解答题19在平面直角坐标系中,过点的直线与抛物线相交于点、两点,设,(1)求证:为定值;(2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由20(本小题满分12分)如图,四棱柱中,侧棱底面,为棱的中点.()证明:面;(II)设点在线段上,且直线与平面所成角的正弦值为,求线段的长.21已知函数f(x)=lnx的反函数为g(x)()若直线l:y=k1x是函数y=f(x)的图象的切线,直线m:y=k2x是函数y=g(x)图象的切线,求证:lm;()设a,bR,且ab,P=g(),Q=,R=,试比较P,Q,R的大小,并说明理由22已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(,2)和(4,2)(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象写出函数y=g(x)的解析式23(本小题满分12分)已知椭圆的离心率为,、分别为左、右顶点, 为其右焦点,是椭圆上异于、的动点,且的最小值为-2.(1)求椭圆的标准方程;(2)若过左焦点的直线交椭圆于两点,求的取值范围.24设椭圆C: +=1(ab0)过点(0,4),离心率为(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被椭圆所截得线段的中点坐标淄川区三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:a=2,b=6,A=30,由正弦定理可得:sinB=,B(0,180),B=120或60故选:C2 【答案】A【解析】解:函数f(x)=的图象如下图所示:由图可得:当k(0,1)时,y=f(x)与y=k的图象有两个交点,即方程f(x)=k有两个不同的实根,故选:A3 【答案】【解析】试题分析:直线,直线过定点,解得定点,当点(3,1)是弦中点时,此时弦长最小,圆心与定点的距离,弦长,故选B.考点:1.直线与圆的位置关系;2.直线系方程.【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是,R是圆的半径,d是圆心到直线的距离.1111 4 【答案】A【解析】解:对于函数y=sin(2x+),令2x+=k+,kz,求得x=,可得它的图象的对称轴方程为x=,kz,故选:A【点评】本题主要考查正弦函数的图象的对称性,属于基础题5 【答案】A【解析】试题分析:通过列举可知,所以.考点:两个集合相等、子集16 【答案】B【解析】考点:棱柱、棱锥、棱台的体积7 【答案】A【解析】解:若=,则,则x=y,即对;若lgx有意义,则x0,即对;若x=y0,则=,若x=y0,则不成立,即错;若xy0,则 x2y2,即错故真命题的序号为故选:A8 【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础9 【答案】A【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理,余弦定理, 实现边与角的互相转化.10【答案】D【解析】解:函数在0,7上是增函数,在7,+)上是减函数,函数f(x)在x=7时,函数取得最大值f(7)=6,函数f(x)是偶函数,在7,0上是减函数,且最大值是6,故选:D11【答案】A 【解析】解析:本题考查直线的参数方程、圆的极坐标方程及其直线与圆的位置关系在直角坐标系中,圆的方程为,直线的普通方程为,直线过定点,点在圆的内部当最小时,直线直线,直线的斜率为,选A12【答案】A【解析】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)=86,则,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键二、填空题13【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键14【答案】 【解析】解: 0sintcostdt=0sin2td(2t)=(cos2t)|=(1+1)=故答案为:15【答案】【解析】解析:构造函数,在上递增, ,错误;构造函数,在上递增,正确;构造函数,当时,错误;由得,即,函数在上递增,在上递减,函数的极小值为,正确;由得,设,则,当时,当时,当时,即,正确16【答案】 【解析】解:函数y=|x|,(xR)与函数,(x0)的定义域不同,它们不表示同一个函数;错;奇函数y=,它的图象不通过直角坐标系的原点;故错;函数y=3(x1)2的图象可由y=3x2的图象向右平移1个单位得到;正确;若函数f(x)的定义域为0,2,则函数f(2x)的定义域由02x2,0x1,它的定义域为:0,1;故错;设函数f(x)是在区间ab上图象连续的函数,且f(a)f(b)0,则方程f(x)=0在区间a,b上至少有一实根故正确;故答案为:17【答案】84 【解析】解:(x2)9的二项展开式的通项公式为 Tr+1=(1)rx183r,令183r=0,求得r=6,可得常数项的值为T7=84,故答案为:84【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题18【答案】A 【解析】解:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A故答案为:A【点评】本题主要考查简单的合情推理,要抓住关键,逐步推断,是一道基础题三、解答题19【答案】(1)证明见解析;(2)弦长为定值,直线方程为.【解析】(2)根据两点间距离公式、点到直线距离公式及勾股定理可求得弦长为 ,进而得时为定值.试题解析:(1)设直线的方程为,由得,因此有为定值111(2)设存在直线:满足条件,则的中点,因此以为直径圆的半径,点到直线的距离,所以所截弦长为当,即时,弦长为定值2,这时直线方程为考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题.20【答案】【解析】【命题意图】本题考查直线和平面垂直的判定和性质、直线和平面所成的角、两点之间的距离等基础知识,意在考查空间想象能力和基本运算能力 21【答案】 【解析】解:()函数f(x)=lnx的反函数为g(x)g(x)=ex,f(x)=ln(x),则函数的导数g(x)=ex,f(x)=,(x0),设直线m与g(x)相切与点(x1,),则切线斜率k2=,则x1=1,k2=e,设直线l与f(x)相切与点(x2,ln(x2),则切线斜率k1=,则x2=e,k1=,故k2k1=e=1,则lm()不妨设ab,PR=g()=0,PR,PQ=g()=,令(x)=2xex+ex,则(x)=2exex0,则(x)在(0,+)上为减函数,故(x)(0)=0,取x=,则ab+0,PQ,=1令t(x)=1+,则t(x)=0,则t(x)在(0,+)上单调递增,故t(x)t(0)=0,取x=ab,则1+0,RQ,综上,PQR,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大22【答案】 【解析】(本题满分为12分)解:(1)由题意知:A=2,T=6,=6得=,f(x)=2sin(x+),函数图象过(,2),sin(+)=1,+,+=,得=A=2,=,=,f(x)=2sin(x+)(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),可得函数y=2sin(x+)的图象,然后再将新的图象向轴正方向平移个单位,得到函数g(x)=2sin(x)+=2sin()的图象故y=g(x)的解析式为:g(x)=2sin()【点评】本题主要考查了由y=Asin(x+)的部分图象确定其解析式,考查了函数y=Asin(x+)的图象变换,函数y=Asin(x+)的解析式的求法,其中根据已知求出函数的最值,周期,向左平移量,特殊点等,进而求出A,值,得到函数的解析式是解答本题的关键23【答案】(1);(2).【解析】试题解析:(1)根据题意知,即,则,设,当时,则.椭圆的方程为.1111设,则,.,.综上知,.考点: 1、待定系数法求椭圆的标准方程;2、平面向量的数量积公式、圆锥曲线中的最值问题.【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.24【答案】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论