邯郸市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
邯郸市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
邯郸市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
邯郸市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
邯郸市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

邯郸市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设集合A=x|y=ln(x1),集合B=y|y=2x,则AB( )A(0,+)B(1,+)C(0,1)D(1,2)2 圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的3 设D为ABC所在平面内一点,则( )ABCD4 平面与平面平行的条件可以是( )A内有无穷多条直线与平行B直线a,aC直线a,直线b,且a,bD内的任何直线都与平行5 已知集合A,B,C中,AB,AC,若B=0,1,2,3,C=0,2,4,则A的子集最多有( )A2个B4个C6个D8个6 在中,内角,所对的边分别是,已知,则( )A B C. D7 设x,y满足约束条件,则目标函数z=ax+by(a0,b0)的最大值为12,则+的最小值为( )ABC6D58 若等边三角形的边长为2,为的中点,且上一点满足,则当取最小值时,( )A6 B5 C4 D39 设,且,则( )A B C D10函数f(x)=()x29的单调递减区间为( )A(,0)B(0,+)C(9,+)D(,9)11O为坐标原点,F为抛物线的焦点,P是抛物线C上一点,若|PF|=4,则POF的面积为( )A1BCD212若命题p:x0R,sinx0=1;命题q:xR,x2+10,则下列结论正确的是( )Ap为假命题Bq为假命题Cpq为假命题Dpq真命题二、填空题13设m是实数,若xR时,不等式|xm|x1|1恒成立,则m的取值范围是14已知随机变量N(2,2),若P(4)=0.4,则P(0)=15设函数,若恰有2个零点,则实数的取值范围是 16若函数为奇函数,则_【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力17如图,ABC是直角三角形,ACB=90,PA平面ABC,此图形中有个直角三角形18若双曲线的方程为4x29y2=36,则其实轴长为三、解答题19(本题满分13分)已知圆的圆心在坐标原点,且与直线:相切,设点为圆上一动点,轴于点,且动点满足,设动点的轨迹为曲线.(1)求曲线的方程;(2)若动直线:与曲线有且仅有一个公共点,过,两点分别作,垂足分别为,且记为点到直线的距离,为点到直线的距离,为点到点的距离,试探索是否存在最值?若存在,请求出最值.20已知数列an的前n项和为Sn,首项为b,若存在非零常数a,使得(1a)Sn=ban+1对一切nN*都成立()求数列an的通项公式;()问是否存在一组非零常数a,b,使得Sn成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由21.已知定义域为R的函数f(x)=是奇函数(1)求a的值;(2)判断f(x)在(,+)上的单调性(直接写出答案,不用证明);(3)若对于任意tR,不等式f(t22t)+f(2t2k)0恒成立,求k的取值范围22我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示()依茎叶图判断哪个班的平均分高?()现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用表示抽到成绩为86分的人数,求的分布列和数学期望;()学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的22列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(参考公式:K2=,其中n=a+b+c+d)23已知Sn为数列an的前n项和,且满足Sn=2ann2+3n+2(nN*)()求证:数列an+2n是等比数列;()设bn=ansin,求数列bn的前n项和;()设Cn=,数列Cn的前n项和为Pn,求证:Pn 24某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?邯郸市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:集合A=x|y=ln(x1)=(1,+),集合B=y|y=2x=(0,+)则AB=(0,+)故选:A【点评】本题考查了集合的化简与运算问题,是基础题目2 【答案】A【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为,将圆锥的高扩大到原来的倍,底面半径缩短到原来的,则体积为,所以,故选A.考点:圆锥的体积公式.13 【答案】A【解析】解:由已知得到如图由=;故选:A【点评】本题考查了向量的三角形法则的运用;关键是想法将向量表示为4 【答案】D【解析】解:当内有无穷多条直线与平行时,a与可能平行,也可能相交,故不选A当直线a,a时,a与可能平行,也可能相交,故不选 B当直线a,直线b,且a 时,直线a 和直线 b可能平行,也可能是异面直线,故不选 C 当内的任何直线都与 平行时,由两个平面平行的定义可得,这两个平面平行,故选 D【点评】本题考查两个平面平行的判定和性质得应用,注意考虑特殊情况5 【答案】B【解析】解:因为B=0,1,2,3,C=0,2,4,且AB,AC;ABC=0,2集合A可能为0,2,即最多有2个元素,故最多有4个子集故选:B6 【答案】A【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理,余弦定理, 实现边与角的互相转化.7 【答案】 B【解析】解:不等式组表示的平面区域如图所示阴影部分,当直线ax+by=z(a0,b0)过直线xy+2=0与直线3xy6=0的交点(4,6)时,目标函数z=ax+by(a0,b0)取得最大12,即4a+6b=12,即2a+3b=6,而=()=+()=,当且仅当a=b=,取最小值故选B8 【答案】D【解析】试题分析:由题知,;设,则,可得,当取最小值时,最小值在时取到,此时,将代入,则.故本题答案选D.考点:1.向量的线性运算;2.基本不等式9 【答案】D【解析】考点:不等式的恒等变换.10【答案】B【解析】解:原函数是由t=x2与y=()t9复合而成,t=x2在(,0)上是减函数,在(0,+)为增函数;又y=()t9其定义域上为减函数,f(x)=()x29在(,0)上是增函数,在(0,+)为减函数,函数ff(x)=()x29的单调递减区间是(0,+)故选:B【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键11【答案】C【解析】解:由抛物线方程得准线方程为:y=1,焦点F(0,1),又P为C上一点,|PF|=4,可得yP=3,代入抛物线方程得:|xP|=2,SPOF=|0F|xP|=故选:C12【答案】A【解析】解:时,sinx0=1;x0R,sinx0=1;命题p是真命题;由x2+10得x21,显然不成立;命题q是假命题;p为假命题,q为真命题,pq为真命题,pq为假命题;A正确故选A【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对R满足x20,命题p,pq,pq的真假和命题p,q真假的关系二、填空题13【答案】0,2 【解析】解:|xm|x1|(xm)(x1)|=|m1|,故由不等式|xm|x1|1恒成立,可得|m1|1,1m11,求得0m2,故答案为:0,2【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题14【答案】0.6 【解析】解:随机变量服从正态分布N(2,2),曲线关于x=2对称,P(0)=P(4)=1P(4)=0.6,故答案为:0.6【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题15【答案】【解析】考点:1、分段函数;2、函数的零点.【方法点晴】本题考查分段函数,函数的零点,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想、数形结合思想和转化化归思想,综合性强,属于较难题型.首先利用分类讨论思想结合数学结合思想,对于轴的交点个数进行分情况讨论,特别注意:1.在时也轴有一个交点式,还需且;2. 当时,与轴无交点,但中和,两交点横坐标均满足.16【答案】2016【解析】因为函数为奇函数且,则由,得,整理,得17【答案】4 【解析】解:由PA平面ABC,则PAC,PAB是直角三角形,又由已知ABC是直角三角形,ACB=90所以BCAC,从而易得BC平面PAC,所以BCPC,所以PCB也是直角三角形,所以图中共有四个直角三角形,即:PAC,PAB,ABC,PCB故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键18【答案】6 【解析】解:双曲线的方程为4x29y2=36,即为:=1,可得a=3,则双曲线的实轴长为2a=6故答案为:6【点评】本题考查双曲线的实轴长,注意将双曲线方程化为标准方程,考查运算能力,属于基础题三、解答题19【答案】【解析】【命题意图】本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.(2)由(1)中知曲线是椭圆,将直线:代入椭圆的方程中,得由直线与椭圆有且仅有一个公共点知,整理得 7分且,当时,设直线的倾斜角为,则,即 10分 当时,11分当时,四边形为矩形,此时, 12分综上、可知,存在最大值,最大值为 13分20【答案】 【解析】解:()数列an的前n项和为Sn,首项为b,存在非零常数a,使得(1a)Sn=ban+1对一切nN*都成立,由题意得当n=1时,(1a)b=ba2,a2=ab=aa1,当n2时,(1a)Sn=ban+1,(1a)Sn+1=ban+1,两式作差,得:an+2=aan+1,n2,an是首项为b,公比为a的等比数列,()当a=1时,Sn=na1=nb,不合题意,当a1时,若,即,化简,得a=0,与题设矛盾,故不存在非零常数a,b,使得Sn成等比数列【点评】本题考查数列的通项公式的求法,考查使得数列成等比数列的非零常数是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用21【答案】 【解析】解:(1)因为f(x)为R上的奇函数所以f(0)=0即=0,a=1 (2)f(x)=1+,在(,+)上单调递减(3)f(t22t)+f(2t2k)0f(t22t)f(2t2k)=f(2t2+k),又f(x)=在(,+)上单调递减,t22t2t2+k,即3t22tk0恒成立,=4+12k0,k(利用分离参数也可)22【答案】 【解析】【专题】综合题;概率与统计【分析】()依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;()由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,=0,1,2,求出概率,可得的分布列和数学期望;()根据成绩不低于85分的为优秀,可得22列联表,计算K2,从而与临界值比较,即可得到结论【解答】解:()由茎叶图知甲班数学成绩集中于609之间,而乙班数学成绩集中于80100分之间,所以乙班的平均分高()由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,=0,1,2P(=0)=,P(=1)=,P(=2)=则随机变量的分布列为012P数学期望E=0+1+2=人()22列联表为甲班乙班合计优秀31013不优秀171027合计202040K2=5.5845.024因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题23【答案】 【解析】(I)证明:由Sn=2ann2+3n+2(nN*),当n2时,an=SnSn1=2an2an12n+4,变形为an+2n=2an1+2(n1),当n=1时,a1=S1=2a11+3+2,解得a1=4,a1+2=2,数列an+2n是等比数列,首项为2,公比为2;(II)解:由(I)可得an=22n12n=2n2nbn=ansin=(2n+2n), =(1)n,bn=(1)n+1(2n+2n)设数列bn的前n项和为Tn当n=2k(kN*)时,T2k=(222+2324+22k122k)+2(12+34+2k12k)=2k=n当n=2k1时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论