求解不可微函数优化的一种混合遗传算法(1)_第1页
求解不可微函数优化的一种混合遗传算法(1)_第2页
求解不可微函数优化的一种混合遗传算法(1)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档 2016 全新精品资料 全程指导写作 独家原创 1 / 3 求解不可微函数优化的一种混合遗传算法 (1) 摘 要 在浮点编码遗传算法中加入 法,构成适于不可微函数全局优化的混合遗传算法。混合算法改善了遗传算法的局部搜索能力,显著提高了遗传算法求得全局解的概率。由于只利用函数值信息,混合算法是一种求解可微和不可微函数全局优化问题的通用方法。 关键词 全局最优;混合算法;遗传算法; 法 1 引言 不可微非线性函数优化问题具有广泛的工程和应用背景,如结构设计中使得结构内最大应力最小而归结为极大极小优化( 题、数据鲁棒性拟合中采取最小 绝对值准则建立失拟函数等。其求解方法的研究越来越受到人们的重视,常用的算法有模式搜索法、单纯形法、 法等,但是这些方法都是局部优化方法,优化结果与初值有关。 近年来,由 鉴“优胜劣汰”的生物进化与遗传思想而首先提出的遗传算法,是一种较为有效的求不可微非线性函数全局最优解的方法。以遗传算法为代表的进化算法发展很快,在各种问题的求解与应用中展现了其特点和魅力,但是其理论基础还不完善,在理论和应用上暴露出诸多不足和缺陷,如存在收敛速度慢且存在早熟收敛 问题 1,2。为克服这一问题,早在 1989年 2,把 2016 全新精品资料 全程指导写作 独家原创 2 / 3 传统的、基于知识的启发式搜索技术相结合,来改善基本遗传算法的局部搜索能力,使遗传算法离开早熟收敛状态而继续接近全局最优解。近来,文献 3和 4在总结分析已有发展成果的基础上,均指出充分利用遗传算法的大范围搜索性能,与快速收敛的局部优化方法结合构成新的全局优化方法,是目前有待集中研究的问题之一,这种混合策略可以从根本上提高遗传算法计算性能。文献 5采用牛顿莱佛森法和遗传算法进行杂交求解旅行商问题,文献 6把最速下降法与遗传算法相结合来求解连续可微函数优化问题,均取得良好的计算效果,但是不适于不可微函数优化问题。 本文提出把 法融入浮点编码遗传算法,把 叉、变异平行的一个算子,构成适于求解不可微函数优化问题的混合遗传算法,该方法可以较好解决遗传算法的早熟收敛问题。数值算例对混合方法的有效性进行了验证。 2 混合遗传算法 编码是遗传算法应用中的首要问题,与二进制编码比较,由于浮点编码遗传算法有精度高,便于大空间搜索的优点,浮点编码越来越受到重视 7。考虑非线性不可 微函数优化问题,式中 为变量个数, 、 分别是第 个变量 的下界和上界。把 法嵌入到浮点编码遗传算法中,得到求解问题如下混合遗传算法: 精品文档 2016 全新精品资料 全程指导写作 独家原创 3 / 3 遗传算法参数赋值。这些参数包括种群规模 m,变量个数 n,交叉概率 异概率 行 索的概率 。 机产生初

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论