利州区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
利州区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
利州区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
利州区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
利州区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

利州区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如图,正方体ABCDA1B1C1D1中,点E,F分别是AA1,AD的中点,则CD1与EF所成角为( )A0B45C60D902 某单位综合治理领导小组成员之问的领导关系可以用框图表示,这种框图通常称为( )A程序流程图B工序流程图C知识结构图D组织结构图3 在直三棱柱中,ACB=90,AC=BC=1,侧棱AA1=,M为A1B1的中点,则AM与平面AA1C1C所成角的正切值为( )ABCD4 设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x5 实数x,y满足不等式组,则下列点中不能使u=2x+y取得最大值的是( )A(1,1)B(0,3)C(,2)D(,0)6 设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A1 B2 C4 D67 若cos()=,则cos(+)的值是( )ABCD8 已知正方体被过一面对角线和它对面两棱中点的平面截去一个三棱台后的几何体的主(正)视图和俯视图如下,则它的左(侧)视图是( )ABCD9 已知向量=(1,),=(,x)共线,则实数x的值为( )A1BC tan35Dtan3510设a=0.5,b=0.8,c=log20.5,则a、b、c的大小关系是( )AcbaBcabCabcDbac11设xR,则“|x2|1”是“x2+x20”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件12已知空间四边形,、分别是、的中点,且,则( )A B C D二、填空题13给出下列四个命题:函数f(x)=12sin2的最小正周期为2;“x24x5=0”的一个必要不充分条件是“x=5”;命题p:xR,tanx=1;命题q:xR,x2x+10,则命题“p(q)”是假命题;函数f(x)=x33x2+1在点(1,f(1)处的切线方程为3x+y2=0其中正确命题的序号是14已知圆的方程为,过点的直线与圆交于两点,若使最小则直线的方程是 15【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=,若函数y=f(f(x)a)1有三个零点,则a的取值范围是_16有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_元17三角形中,则三角形的面积为 .18甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为 三、解答题19(本小题满分12分)已知数列的各项均为正数,.()求数列的通项公式;()求数列的前项和20 坐标系与参数方程线l:3x+4y12=0与圆C:(为参数 )试判断他们的公共点个数 21设函数f(x)=mx2mx1(1)若对一切实数x,f(x)0恒成立,求m的取值范围;(2)对于x1,3,f(x)m+5恒成立,求m的取值范围 22(本小题满分12分)若二次函数满足,且.(1)求的解析式;(2)若在区间上,不等式恒成立,求实数的取值范围23【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数.(1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.24设函数f(x)=1+(1+a)xx2x3,其中a0()讨论f(x)在其定义域上的单调性;()当x时,求f(x)取得最大值和最小值时的x的值利州区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:连结A1D、BD、A1B,正方体ABCDA1B1C1D1中,点E,F分别是AA1,AD的中点,EFA1D,A1BD1C,DA1B是CD1与EF所成角,A1D=A1B=BD,DA1B=60CD1与EF所成角为60故选:C【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养2 【答案】D【解析】解:用来描述系统结构的图示是结构图,某单位综合治理领导小组成员之问的领导关系可以用组织结构图表示故选D【点评】本题考查结构图和流程图的概念,是基础题解题时要认真审题,仔细解答3 【答案】D【解析】解:双曲线(a0,b0)的渐近线方程为y=x联立方程组,解得A(,),B(,),设直线x=与x轴交于点DF为双曲线的右焦点,F(C,0)ABF为钝角三角形,且AF=BF,AFB90,AFD45,即DFDAc,ba,c2a2a2c22a2,e22,e又e1离心率的取值范围是1e故选D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含a,c的齐次式,再解不等式4 【答案】 C【解析】解:抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5,4),代入抛物线方程得p210p+16=0,所以p=2或p=8所以抛物线C的方程为y2=4x或y2=16x故答案C【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题5 【答案】 D【解析】解:由题意作出其平面区域,将u=2x+y化为y=2x+u,u相当于直线y=2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=32x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=32x上但不在阴影区域内,故不成立;故选D【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题6 【答案】B【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,解得,由题意得,解得或,因为是递增的等差数列,所以,故选B考点:等差数列的性质7 【答案】B【解析】解:cos()=,cos(+)=cos=cos()=故选:B8 【答案】A【解析】解:由题意可知截取三棱台后的几何体是7面体,左视图中前、后平面是线段, 上、下平面也是线段,轮廓是正方形,AP是虚线,左视图为:故选A【点评】本题考查简单几何体的三视图的画法,三视图是常考题型,值得重视9 【答案】B【解析】解:向量=(1,),=(,x)共线,x=,故选:B【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题10【答案】B【解析】解:a=0.5,b=0.8,0ab,c=log20.50,cab,故选B【点评】本题主要考查了对数值、指数值大小的比较,常常与中间值进行比较,属于基础题11【答案】A【解析】解:由“|x2|1”得1x3,由x2+x20得x1或x2,即“|x2|1”是“x2+x20”的充分不必要条件,故选:A12【答案】A【解析】试题分析:取的中点,连接,根据三角形中两边之和大于第三边,两边之差小于第三边,所以,故选A考点:点、线、面之间的距离的计算1【方法点晴】本题主要考查了点、线、面的位置关系及其应用,其中解答中涉及三角形的边与边之间的关系、三棱锥的结构特征、三角形的中位线定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据三角形的两边之和大于第三边和三角形的两边之差小于第三边是解答的关键,属于基础题二、填空题13【答案】 【解析】解:,T=2,故正确;当x=5时,有x24x5=0,但当x24x5=0时,不能推出x一定等于5,故“x=5”是“x24x5=0”成立的充分不必要条件,故错误;易知命题p为真,因为0,故命题q为真,所以p(q)为假命题,故正确;f(x)=3x26x,f(1)=3,在点(1,f(1)的切线方程为y(1)=3(x1),即3x+y2=0,故正确综上,正确的命题为故答案为14【答案】【解析】试题分析:由圆的方程为,表示圆心在,半径为的圆,点到圆心的距离等于,小于圆的半径,所以点在圆内,所以当时,最小,此时,由点斜式方程可得,直线的方程为,即.考点:直线与圆的位置关系的应用.15【答案】【解析】当x0时,由f(x)1=0得x2+2x+1=1,得x=2或x=0,当x0时,由f(x)1=0得,得x=0,由,y=f(f(x)a)1=0得f(x)a=0或f(x)a=2,即f(x)=a,f(x)=a2,作出函数f(x)的图象如图:y=1(x0),y=,当x(0,1)时,y0,函数是增函数,x(1,+)时,y0,函数是减函数,x=1时,函数取得最大值:,当1a2时,即a(3,3+)时,y=f(f(x)a)1有4个零点,当a2=1+时,即a=3+时则y=f(f(x)a)1有三个零点,当a3+时,y=f(f(x)a)1有1个零点当a=1+时,则y=f(f(x)a)1有三个零点,当时,即a(1+,3)时,y=f(f(x)a)1有三个零点综上a,函数有3个零点故答案为:点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解16【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。故答案为:146417【答案】【解析】试题分析:因为中,由正弦定理得,又,即,所以,考点:正弦定理,三角形的面积【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答解三角形时三角形面积公式往往根据不同情况选用不同形式,等等18【答案】【解析】【易错点睛】古典概型的两种破题方法:(1)树状图是进行列举的一种常用方法,适合于有顺序的问题及较复杂问题中基本事件数的探求另外在确定基本事件时,可以看成是有序的,如与不同;有时也可以看成是无序的,如相同(2)含有“至多”、“至少”等类型的概率问题,从正面突破比较困难或者比较繁琐时,考虑其反面,即对立事件,应用求解较好三、解答题19【答案】(本小题满分12分)解: ()由得,是等差数列,公差为4,首项为4, (3分),由得 (6分)(), (9分) 数列的前项和为 (12分)20【答案】 【解析】解:圆C:的标准方程为(x+1)2+(y2)2=4由于圆心C(1,2)到直线l:3x+4y12=0的距离d=2故直线与圆相交故他们的公共点有两个【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键 21【答案】 【解析】解:(1)当m=0时,f(x)=10恒成立,当m0时,若f(x)0恒成立,则解得4m0综上所述m的取值范围为(4,0(2)要x1,3,f(x)m+5恒成立,即恒成立令当 m0时,g(x)是增函数,所以g(x)max=g(3)=7m60,解得所以当m=0时,60恒成立当m0时,g(x)是减函数所以g(x)max=g(1)=m60,解得m6所以m0综上所述,【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键22【答案】(1);(2)【解析】试题分析:(1)根据二次函数满足,利用多项式相等,即可求解的值,得到函数的解析式;(2)由恒成立,转化为,设,只需,即可而求解实数的取值范围试题解析:(1) 满足,解得,故.考点:函数的解析式;函数的恒成立问题.【方法点晴】本题主要考查了函数解析式的求解、函数的恒成立问题,其中解答中涉及到一元二次函数的性质、多项式相等问题、以及不等式的恒成立问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,推理与运算能力,以及转

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论