绛县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
绛县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
绛县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
绛县高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
绛县高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

绛县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设a=60.5,b=0.56,c=log0.56,则( )AcbaBcabCbacDbca2 已知a为常数,则使得成立的一个充分而不必要条件是( )Aa0Ba0CaeDae3 已知数列的各项均为正数,若数列的前项和为5,则( )A B C D4 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()A B C D5 已知实数a,b,c满足不等式0abc1,且M=2a,N=5b,P=()c,则M、N、P的大小关系为( )AMNPBPMNCNPM6 已知,其中是虚数单位,则的虚部为( )A B C D【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.7 若函数的图象关于直线对称,且当,时,则等于( )A B C. D8 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45和30,而且两条船与炮台底部连线成30角,则两条船相距( )A10米B100米C30米D20米9 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数f(x)有如下四个命题:f(f(x)=1;函数f(x)是偶函数;任取一个不为零的有理数T,f(x+T)=f(x)对任意的x=R恒成立;存在三个点A(x1,f(x1),B(x2,f(x2),C(x3,f(x3),使得ABC为等边三角形其中真命题的个数有( )A1个B2个C3个D4个10如图所示,已知四边形的直观图是一个边长为的正方形,则原图形的周长为( ) A B C. D11已知函数(),若数列满足,数列的前项和为,则( )A. B. C. D.【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力.12已知全集,集合,集合,则集合为( ) A. B. C. D.【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.二、填空题13在直角坐标系xOy中,已知点A(0,1)和点B(3,4),若点C在AOB的平分线上且|=2,则=14阅读如图所示的程序框图,运行相应的程序,若输入的X的值为2,则输出的结果是15已知函数f(x)=,则关于函数F(x)=f(f(x)的零点个数,正确的结论是(写出你认为正确的所有结论的序号)k=0时,F(x)恰有一个零点k0时,F(x)恰有2个零点k0时,F(x)恰有3个零点k0时,F(x)恰有4个零点16已知实数x,y满足约束条,则z=的最小值为17数列an是等差数列,a4=7,S7= 18已知数列an中,2an,an+1是方程x23x+bn=0的两根,a1=2,则b5=三、解答题19如图,菱形ABCD的边长为2,现将ACD沿对角线AC折起至ACP位置,并使平面PAC平面ABC ()求证:ACPB;()在菱形ABCD中,若ABC=60,求直线AB与平面PBC所成角的正弦值;()求四面体PABC体积的最大值20已知椭圆x2+4y2=4,直线l:y=x+m(1)若l与椭圆有一个公共点,求m的值;(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值21(本题12分)正项数列满足(1)求数列的通项公式;(2)令,求数列的前项和为.22设f(x)=x2ax+2当x,使得关于x的方程f(x)tf(2a)=0有三个不相等的实数根,求实数t的取值范围 23(本小题满分13分)已知函数,()讨论的单调性;()证明:当时,有唯一的零点,且24某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。规定:只能通过前一轮考核才能进入下一轮的考核,否则将被淘汰;三轮考核都通过才算通过该高校的自主招生考试。学生甲三轮考试通过的概率分别为,且各轮考核通过与否相互独立。(1)求甲通过该高校自主招生考试的概率;(2)若学生甲每通过一轮考核,则家长奖励人民币1000元作为大学学习的教育基金。记学生甲得到教育基金的金额为,求的分布列和数学期望。绛县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:a=60.51,0b=0.561,c=log0.560,cba故选:A【点评】本题考查了指数函数与对数函数的单调性,属于基础题2 【答案】C【解析】解:由积分运算法则,得=lnx=lneln1=1因此,不等式即即a1,对应的集合是(1,+)将此范围与各个选项加以比较,只有C项对应集合(e,+)是(1,+)的子集原不等式成立的一个充分而不必要条件是ae故选:C【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题3 【答案】C 【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前项和由得,是等差数列,公差为,首项为,由得,数列的前项和为,选C4 【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2故答案为:C5 【答案】A【解析】解:0abc1,12a2,5b1,()c1,5b=()b()c()c,即MNP,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键6 【答案】B【解析】由复数的除法运算法则得,所以的虚部为.7 【答案】C【解析】考点:函数的图象与性质.【方法点晴】本题主要考查函数的图象与性质,涉及数形结合思想、函数与方程思想、转化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型首先利用数形结合思想和转化化归思想可得,解得,从而,再次利用数形结合思想和转化化归思想可得关于直线对称,可得,从而8 【答案】C【解析】解:如图,过炮台顶部A作水平面的垂线,垂足为B,设A处观测小船C的俯角为45,设A处观测小船D的俯角为30,连接BC、BDRtABC中,ACB=45,可得BC=AB=30米RtABD中,ADB=30,可得BD=AB=30米在BCD中,BC=30米,BD=30米,CBD=30,由余弦定理可得:CD2=BC2+BD22BCBDcos30=900CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离着重考查了余弦定理、空间线面的位置关系等知识,属于中档题熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键9 【答案】 D【解析】解:当x为有理数时,f(x)=1;当x为无理数时,f(x)=0当x为有理数时,f(f(x)=f(1)=1;当x为无理数时,f(f(x)=f(0)=1即不管x是有理数还是无理数,均有f(f(x)=1,故正确;有理数的相反数还是有理数,无理数的相反数还是无理数,对任意xR,都有f(x)=f(x),故正确; 若x是有理数,则x+T也是有理数; 若x是无理数,则x+T也是无理数根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对xR恒成立,故正确; 取x1=,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0A(,0),B(0,1),C(,0),恰好ABC为等边三角形,故正确故选:D【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题10【答案】C【解析】考点:平面图形的直观图.11【答案】A. 【解析】12【答案】C.【解析】由题意得,故选C.二、填空题13【答案】(,) 【解析】解:,设OC与AB交于D(x,y)点则:AD:BD=1:5即D分有向线段AB所成的比为则解得:又|=2=(,)故答案为:(,)【点评】如果已知,有向线段A(x1,y1),B(x2,y2)及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解14【答案】3 【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值当x=2时,f(x)=122=3故答案为:3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视15【答案】 【解析】解:当k=0时,当x0时,f(x)=1,则f(f(x)=f(1)=0,此时有无穷多个零点,故错误;当k0时,()当x0时,f(x)=kx+11,此时f(f(x)=f(kx+1)=,令f(f(x)=0,可得:x=0;()当0x1时,此时f(f(x)=f()=,令f(f(x)=0,可得:x=,满足;()当x1时,此时f(f(x)=f()=k+10,此时无零点综上可得,当k0时,函数有两零点,故正确;当k0时,()当x时,kx+10,此时f(f(x)=f(kx+1)=k(kx+1)+1,令f(f(x)=0,可得:,满足;()当时,kx+10,此时f(f(x)=f(kx+1)=,令f(f(x)=0,可得:x=0,满足;()当0x1时,此时f(f(x)=f()=,令f(f(x)=0,可得:x=,满足;()当x1时,此时f(f(x)=f()=k+1,令f(f(x)=0得:x=1,满足;综上可得:当k0时,函数有4个零点故错误,正确故答案为:【点评】本题考查复合函数的零点问题考查了分类讨论和转化的思想方法,要求比较高,属于难题16【答案】 【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=32x+y,设t=2x+y,则y=2x+t,平移直线y=2x+t,由图象可知当直线y=2x+t经过点B时,直线y=2x+t的截距最小,此时t最小由,解得,即B(3,3),代入t=2x+y得t=2(3)+3=3t最小为3,z有最小值为z=33=故答案为:【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法17【答案】49【解析】解:=7a4=49故答案:49【点评】本题考查等差数列的性质和应用,解题时要认真审题,仔细求解18【答案】1054 【解析】解:2an,an+1是方程x23x+bn=0的两根,2an+an+1=3,2anan+1=bn,a1=2,a2=1,同理可得a3=5,a4=7,a5=17,a6=31则b5=217(31)=1054故答案为:1054【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题三、解答题19【答案】 【解析】解:()证明:取AC中点O,连接PO,BO,由于四边形ABCD为菱形,PA=PC,BA=BC,POAC,BOAC,又POBO=O,AC平面POB,又PB平面POB,ACPB()平面PAC平面ABC,平面PAC平面ABC=AC,PO平面PAC,POAC,PO面ABC,OB,OC,OP两两垂直,故以O为原点,以方向分别为x,y,z轴正方向建立空间直角坐标系,ABC=60,菱形ABCD的边长为2,设平面PBC的法向量,直线AB与平面PBC成角为,取x=1,则,于是,直线AB与平面PBC成角的正弦值为()法一:设ABC=APC=,(0,),又PO平面ABC, =(),当且仅当,即时取等号,四面体PABC体积的最大值为法二:设ABC=APC=,(0,),又PO平面ABC,=(),设,则,且0t1,当时,VPABC0,当时,VPABC0,当时,VPABC取得最大值,四面体PABC体积的最大值为法三:设PO=x,则BO=x,(0x2)又PO平面ABC,当且仅当x2=82x2,即时取等号,四面体PABC体积的最大值为【点评】本题考查直线与平面垂直的判定定理以及性质定理的应用,直线与平面所成角的求法,几何体的体积的最值的求法,考查转化思想以及空间思维能力的培养20【答案】 【解析】解:(1)把直线y=x+m代入椭圆方程得:x2+4(x+m)2=4,即:5x2+8mx+4m24=0,=(8m)245(4m24)=16m2+80=0解得:m=(2)设该直线与椭圆相交于两点A(x1,y1),B(x2,y2),则x1,x2是方程5x2+8mx+4m24=0的两根,由韦达定理可得:x1+x2=,x1x2=,|AB|=2;m=【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题21【答案】(1);(2).考点:1一元二次方程;2裂项相消法求和22【答案】【解析】设f(x)=x2ax+2当x,则t=,对称轴m=(0,且开口向下;时,t取得最小值,此时x=9税率t的最小值为【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识考查的知识全面而到位!23【答案】(本小题满分13分)解:(), (1分)当时,解得或,解得,的递增区间为和,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论