广丰区一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
广丰区一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
广丰区一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
广丰区一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
广丰区一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广丰区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 为得到函数的图象,只需将函数y=sin2x的图象( )A向左平移个长度单位B向右平移个长度单位C向左平移个长度单位D向右平移个长度单位2 如图,函数f(x)=Asin(2x+)(A0,|)的图象过点(0,),则f(x)的图象的一个对称中心是( )A(,0)B(,0)C(,0)D(,0)3 若命题p:x0R,sinx0=1;命题q:xR,x2+10,则下列结论正确的是( )Ap为假命题Bq为假命题Cpq为假命题Dpq真命题4 从1、2、3、4、5中任取3个不同的数、则这3个数能构成一个三角形三边长的概率为( )A. B.C. D.5 设P是椭圆+=1上一点,F1、F2是椭圆的焦点,若|PF1|等于4,则|PF2|等于( )A22B21C20D136 已知变量满足约束条件,则的取值范围是( )A B C D7 设集合是三角形的三边长,则所表示的平面区域是( ) A B C D8 如图甲所示, 三棱锥 的高 ,分别在 和上,且,图乙的四个图象大致描绘了三棱锥的体积与的变化关系,其中正确的是( ) A B C. D11119 如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则几何体的体积为( )A. B. C. 1 D. 【命题意图】本题考查空间几何体的三视图,几何体的体积等基础知识,意在考查学生空间想象能力和计算能力10若全集U=1,0,1,2,P=xZ|x22,则UP=( )A2B0,2C1,2D1,0,211直径为6的球的表面积和体积分别是( )A B C D12“”是“一元二次方程x2+x+m=0有实数解”的( )A充分非必要条件B充分必要条件C必要非充分条件D非充分非必要条件二、填空题13已知是等差数列,为其公差, 是其前项和,若只有是中的最小项,则可得出的结论中所有正确的序号是_ 14不等式恒成立,则实数的值是_.15已知点M(x,y)满足,当a0,b0时,若ax+by的最大值为12,则+的最小值是16已知直线l过点P(2,2),且与以A(1,1),B(3,0)为端点的线段AB相交,则直线l的斜率的取值范围是17已知实数x,y满足约束条,则z=的最小值为18已知两个单位向量满足:,向量与的夹角为,则 .三、解答题19已知梯形ABCD中,ABCD,B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周得到如图所示的几何体(1)求几何体的表面积;(2)点M时几何体的表面上的动点,当四面体MABD的体积为,试判断M点的轨迹是否为2个菱形20已知矩阵A,向量.求向量,使得A2.21对于定义域为D的函数y=f(x),如果存在区间m,nD,同时满足:f(x)在m,n内是单调函数;当定义域是m,n时,f(x)的值域也是m,n则称m,n是该函数的“和谐区间”(1)证明:0,1是函数y=f(x)=x2的一个“和谐区间”(2)求证:函数不存在“和谐区间”(3)已知:函数(aR,a0)有“和谐区间”m,n,当a变化时,求出nm的最大值 22某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指数不低于70,说明孩子幸福感强)(1)根据茎叶图中的数据完成列联表,并判断能否有的把握认为孩子的幸福感强与是否是留守儿童有关?幸福感强幸福感弱总计留守儿童非留守儿童总计1111(2)从15个留守儿童中按幸福感强弱进行分层抽样,共抽取5人,又在这5人中随机抽取2人进行家访,求这2个学生中恰有一人幸福感强的概率参考公式:附表:0.0500.0103.8416.63523已知椭圆C: +=1(ab0)的短轴长为2,且离心率e=,设F1,F2是椭圆的左、右焦点,过F2的直线与椭圆右侧(如图)相交于M,N两点,直线F1M,F1N分别与直线x=4相交于P,Q两点()求椭圆C的方程;()求F2PQ面积的最小值24计算下列各式的值:(1)(2)(lg5)2+2lg2(lg2)2广丰区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:,只需将函数y=sin2x的图象向左平移个单位得到函数的图象故选A【点评】本题主要考查诱导公式和三角函数的平移属基础题2 【答案】 B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sin=,即sin=,由于|,解得:=,即有:f(x)=2sin(2x+)由2x+=k,kZ可解得:x=,kZ,故f(x)的图象的对称中心是:(,0),kZ当k=0时,f(x)的图象的对称中心是:(,0),故选:B【点评】本题主要考查由函数y=Asin(x+ )的部分图象求函数的解析式,正弦函数的对称性,属于中档题3 【答案】A【解析】解:时,sinx0=1;x0R,sinx0=1;命题p是真命题;由x2+10得x21,显然不成立;命题q是假命题;p为假命题,q为真命题,pq为真命题,pq为假命题;A正确故选A【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对R满足x20,命题p,pq,pq的真假和命题p,q真假的关系4 【答案】【解析】解析:选C.从1、2、3、4、5中任取3个不同的数有下面10个不同结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),能构成一个三角形三边的数为(2,3,4),(2,4,5),(3,4,5),故概率P.5 【答案】A【解析】解:P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,|PF2|=213|PF1|=264=22故选:A【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用6 【答案】A【解析】试题分析:作出可行域,如图内部(含边界),表示点与原点连线的斜率,易得,所以故选A考点:简单的线性规划的非线性应用7 【答案】A【解析】考点:二元一次不等式所表示的平面区域.8 【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题. 9 【答案】D【解析】10【答案】A【解析】解:x22xP=xZ|x22=x|x,xZ|=1,0,1,又全集U=1,0,1,2,UP=2故选:A11【答案】D【解析】考点:球的表面积和体积12【答案】A【解析】解:由x2+x+m=0知, (或由0得14m0,) ,反之“一元二次方程x2+x+m=0有实数解”必有,未必有,因此“”是“一元二次方程x2+x+m=0有实数解”的充分非必要条件故选A【点评】本题考查充分必要条件的判断性,考查二次方程有根的条件,注意这些不等式之间的蕴含关系二、填空题13【答案】【解析】因为只有是中的最小项,所以,所以,故正确;,故正确;,无法判断符号,故错误,故正确答案答案: 14【答案】【解析】试题分析:因为不等式恒成立,所以当时,不等式可化为,不符合题意;当时,应满足,即,解得.1考点:不等式的恒成立问题.15【答案】4 【解析】解:画出满足条件的平面区域,如图示:,由,解得:A(3,4),显然直线z=ax+by过A(3,4)时z取到最大值12,此时:3a+4b=12,即+=1,+=(+)(+)=2+2+2=4,当且仅当3a=4b时“=”成立,故答案为:4【点评】本题考查了简单的线性规划,考查了利用基本不等式求最值,解答此题的关键是对“1”的灵活运用,是基础题16【答案】,3 【解析】解:直线AP的斜率K=3,直线BP的斜率K=由图象可知,则直线l的斜率的取值范围是,3,故答案为:,3,【点评】本题给出经过定点P的直线l与线段AB有公共点,求l的斜率取值范围着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题17【答案】 【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=32x+y,设t=2x+y,则y=2x+t,平移直线y=2x+t,由图象可知当直线y=2x+t经过点B时,直线y=2x+t的截距最小,此时t最小由,解得,即B(3,3),代入t=2x+y得t=2(3)+3=3t最小为3,z有最小值为z=33=故答案为:【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法18【答案】【解析】考点:向量的夹角【名师点睛】平面向量数量积的类型及求法(1)求平面向量的数量积有三种方法:一是定义;二是坐标运算公式;三是利用数量积的几何意义(2)求较复杂的平面向量的数量积的运算时,可先利用平面向量数量积的运算律或相减公式进行化简三、解答题19【答案】 【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=422=8,或S=42+(422)+2=8;(2)由已知SABD=2sin135=1,因而要使四面体MABD的体积为,只要M点到平面ABCD的距离为1,因为在空间中有两个平面到平面ABCD的距离为1,它们与几何体的表面的交线构成2个曲边四边形,不是2个菱形【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目20【答案】【解析】A2.设.由A2,得,从而解得x-1,y2,所以21【答案】 【解析】解:(1)y=x2在区间0,1上单调递增又f(0)=0,f(1)=1,值域为0,1,区间0,1是y=f(x)=x2的一个“和谐区间”(2)设m,n是已知函数定义域的子集x0,m,n(,0)或m,n(0,+),故函数在m,n上单调递增若m,n是已知函数的“和谐区间”,则故m、n是方程的同号的相异实数根x23x+5=0无实数根,函数不存在“和谐区间”(3)设m,n是已知函数定义域的子集x0,m,n(,0)或m,n(0,+),故函数在m,n上单调递增若m,n是已知函数的“和谐区间”,则故m、n是方程,即a2x2(a2+a)x+1=0的同号的相异实数根,m,n同号,只须=a2(a+3)(a1)0,即a1或a3时,已知函数有“和谐区间”m,n,当a=3时,nm取最大值 22【答案】(1)有的把握认为孩子的幸福感强与是否留守儿童有关;(2).【解析】试题解析:(1)列联表如下:幸福感强幸福感弱总计留守儿童6915非留守儿童18725总计241640有的把握认为孩子的幸福感强与是否留守儿童有关(2)按分层抽样的方法可抽出幸福感强的孩子2人,记作:,;幸福感强的孩子3人,记作:,“抽取2人”包含的基本事件有,共10个事件:“恰有一人幸福感强”包含的基本事件有,共6个故考点:1、 茎叶图及独立性检验的应用;2、古典概型概率公式.23【答案】 【解析】解:()椭圆C: +=1(ab0)的短轴长为2,且离心率e=,解得a2=4,b2=3,椭圆C的方程为=1()设直线MN的方程为x=ty+1,(),代入椭圆,化简,得(3t2+4)y2+6ty9=0,设M(x1,y1),N(x2,y2),又

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论