




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
古冶区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 数列an的通项公式为an=n+p,数列bn的通项公式为bn=2n5,设cn=,若在数列cn中c8cn(nN*,n8),则实数p的取值范围是( )A(11,25)B(12,16C(12,17)D16,17)2 已知数列是各项为正数的等比数列,点、都在直线上,则数列的前项和为( )A B C D3 在区域内任意取一点P(x,y),则x2+y21的概率是( )A0BCD4 直线的倾斜角是( )ABCD5 不等式x(x1)2的解集是( )Ax|2x1Bx|1x2Cx|x1或x2Dx|x2或x16 数列1,3,6,10,的一个通项公式是( )A B C D7 某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A. B4C.D8 若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=( )A1B2C3D49 函数f(x)=cos2xcos4x的最大值和最小正周期分别为( )A,B,C,D,10过抛物线焦点的直线与双曲线的一条渐近线平行,并交其抛物线于、两点,若,且,则抛物线方程为( )A B C D【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力11已知全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,则集合0,1可以表示为( )AMNB(UM)NCM(UN)D(UM)(UN)12已知集合,则下列式子表示正确的有( );A1个 B2个 C3个 D4个二、填空题13抛物线的焦点为,经过其准线与轴的交点的直线与抛物线切于点,则外接圆的标准方程为_.14命题“若,则”的否命题为15在平面直角坐标系中,记,其中为坐标原点,给出结论如下:若,则;对平面任意一点,都存在使得;若,则表示一条直线;若,且,则表示的一条线段且长度为其中所有正确结论的序号是 16设A=x|x1或x3,B=x|axa+1,AB=B,则a的取值范围是17当时,函数的图象不在函数的下方,则实数的取值范围是_【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力18有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_元三、解答题19已知是等差数列,是等比数列,为数列的前项和,且,()(1)求和;(2)若,求数列的前项和20在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q()求k的取值范围;()设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由21已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为4()椭圆C的标准方程()已知P、Q是椭圆C上的两点,若OPOQ,求证:为定值()当为()所求定值时,试探究OPOQ是否成立?并说明理由 22设p:关于x的不等式ax1的解集是x|x0;q:函数的定义域为R若pq是真命题,pq是假命题,求实数a的取值范围23如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2()证明ADBE;()求多面体EFABCD体积的最大值24在极坐标系内,已知曲线C1的方程为22(cos2sin)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数)()求曲线C1的直角坐标方程以及曲线C2的普通方程;()设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值古冶区民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:当anbn时,cn=an,当anbn时,cn=bn,cn是an,bn中的较小者,an=n+p,an是递减数列,bn=2n5,bn是递增数列,c8cn(n8),c8是cn的最大者,则n=1,2,3,7,8时,cn递增,n=8,9,10,时,cn递减,n=1,2,3,7时,2n5n+p总成立,当n=7时,2757+p,p11,n=9,10,11,时,2n5n+p总成立,当n=9时,2959+p,成立,p25,而c8=a8或c8=b8,若a8b8,即23p8,p16,则c8=a8=p8,p8b7=275,p12,故12p16, 若a8b8,即p8285,p16,c8=b8=23,那么c8c9=a9,即8p9,p17,故16p17,综上,12p17故选:C2 【答案】C 【解析】解析:本题考查等比数列的通项公式与前项和公式,,,数列的前项和为,选C3 【答案】C【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域表示的区域为以正方形OABC的内部及边界,其面积为1;x2+y21表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为=,由几何概型的计算公式,可得点P(x,y)满足x2+y21的概率是=;故选C【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算4 【答案】A【解析】解:设倾斜角为,直线的斜率为,tan=,0180,=30故选A【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握5 【答案】B【解析】解:x(x1)2,x2x20,即(x2)(x+1)0,1x2,即不等式的解集为x|1x2故选:B6 【答案】C【解析】试题分析:可采用排除法,令和,验证选项,只有,使得,故选C考点:数列的通项公式7 【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V23221,故选D.8 【答案】A【解析】解:f(x)=acosx,g(x)=x2+bx+1,f(x)=asinx,g(x)=2x+b,曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,f(0)=a=g(0)=1,且f(0)=0=g(0)=b,即a=1,b=0a+b=1故选:A【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题9 【答案】B【解析】解:y=cos2xcos4x=cos2x(1cos2x)=cos2xsin2x=sin22x=,故它的周期为=,最大值为=故选:B10【答案】C【解析】由已知得双曲线的一条渐近线方程为,设,则,所以,解得或,因为,故,故,所以抛物线方程为11【答案】B【解析】解:全集U=0,1,2,3,4,集合M=2,3,4,N=0,1,4,UM=0,1,N(UM)=0,1,故选:B【点评】本题主要考查集合的子交并补运算,属于基础题12【答案】C【解析】试题分析:,所以正确.故选C.考点:元素与集合关系,集合与集合关系二、填空题13【答案】或【解析】试题分析:由题意知,设,由,则切线方程为,代入得,则,可得,则外接圆以为直径,则或.故本题答案填或1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质14【答案】若,则【解析】试题分析:若,则,否命题要求条件和结论都否定考点:否命题.15【答案】【解析】解析:本题考查平面向量基本定理、坐标运算以及综合应用知识解决问题的能力由得,错误;与不共线,由平面向量基本定理可得,正确;记,由得,点在过点与平行的直线上,正确;由得,与不共线,正确;设,则有,且,表示的一条线段且线段的两个端点分别为、,其长度为,错误16【答案】a0或a3 【解析】解:A=x|x1或x3,B=x|axa+1,且AB=B,BA,则有a+11或a3,解得:a0或a3,故答案为:a0或a317【答案】【解析】由题意,知当时,不等式,即恒成立令,令,在为递减,在为递增,则18【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。故答案为:1464三、解答题19【答案】(1),或,;(2).【解析】试题解析:(1)设的公差为,的公比为, 由题意得解得或,或,(2)若,由(1)知,考点:1、等差数列与等比数列的通项公式及前项和公式;2、裂项相消法求和的应用.20【答案】 【解析】解:()由已知条件,直线l的方程为,代入椭圆方程得整理得直线l与椭圆有两个不同的交点P和Q,等价于的判别式=,解得或即k的取值范围为()设P(x1,y1),Q(x2,y2),则,由方程, 又 而所以与共线等价于,将代入上式,解得由()知或,故没有符合题意的常数k【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题21【答案】 【解析】(I)解:由题意可设椭圆的坐标方程为(ab0)离心率为,且椭圆C上一点到两个焦点的距离之和为4,2a=4,解得a=2,c=1b2=a2c2=3椭圆C的标准方程为(II)证明:当OP与OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=x(k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=为定值当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立因此=为定值(III)当=定值时,试探究OPOQ是否成立?并说明理由OPOQ不一定成立下面给出证明证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则=,满足条件当直线OP或OQ的斜率都存在时,设直线OP的方程为y=kx(k0),则直线OQ的方程为y=kx(kk,k0),P(x,y)联立,化为,|OP|2=x2+y2=,同理可得|OQ|2=,=+=化为(kk)2=1,kk=1OPOQ或kk=1因此OPOQ不一定成立【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题22【答案】 【解析】解:关于x的不等式ax1的解集是x|x0,0a1;故命题p为真时,0a1;函数的定义域为R,a,由复合命题真值表知:若pq是真命题,pq是假命题,则命题p、q一真一假,当p真q假时,则0a;当q真p假时,则a1,综上实数a的取值范围是(0,)1,+)23【答案】 【解析】()证明:BD为圆O的直径,ABAD,直线AE是圆O所在平面的垂线,ADAE,ABAE=A,AD平面ABE,ADBE;()解:多面体EFABCD体积V=VBAEFC+VDAEFC=2VBAEFC直线AE,CF是圆O所在平面的两条垂线,AECF,AEAC,AFACAE=CF=,AEFC为矩形,AC=2,SAEFC=2,作BMAC交AC于点M,则BM平面AEFC,V=2VBAEFC=2=多面体EFABCD体积的最大值为【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等24【答案】 【解析】【专题】计算题;直线与圆;坐标系和参数方程【分析】()运用x=cos,y=sin,x2+y2=2,即可得到曲线C1的直角坐标方程,再由代入法,即可化简曲线C2的参数方程为普通方程;()可经过圆心(1,2)作直线3x+4y15=0的垂线,此时切线长最小再由点到直线的距离公式和勾股定理,即可得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 校园安保消防知识培训课件
- 学生暴雨考试题及答案
- 前置胎盘考试题及答案
- 铁路维修考试题及答案
- 教师资格证面试题及答案
- 日语试题试卷及答案
- 税法总论考试题及答案
- 2025年广东省合成氨工艺操作证理论考试练习题库(含答案)
- 2025年阜阳市颍泉区选调区内教师考试笔试试题(含答案)
- 2025年达州市大竹县城区学校考调教师笔试试题(含答案)
- 数学集体备课汇报展示
- 食品生产企业采购管理制度
- 2025年养老护理员职业资格技师培训试题(含答案)
- 《鸿蒙应用开发项目教程》全套教学课件
- 四川省广安市2024-2025学年高一下学期期末考试数学试题(含答案)
- 电缆测试技术课件
- 政协大走访活动方案
- 个人养老金课件
- 2025至2030中国氧化钪行业需求状况及未来趋势前景研判报告
- udi追溯管理制度
- 新能源产业园区厂房物业管理及绿色能源应用合同
评论
0/150
提交评论