




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
酉阳土家族苗族自治县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若函数y=ax(b+1)(a0,a1)的图象在第一、三、四象限,则有( )Aa1且b1Ba1且b0C0a1且b0D0a1且b02 已知幂函数y=f(x)的图象过点(,),则f(2)的值为( )ABC2D23 如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(,),AOC=,若|BC|=1,则cos2sincos的值为( )ABCD4 某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m),则该工程需挖掘的总土方数为( )A560m3B540m3C520m3D500m35 若偶函数y=f(x),xR,满足f(x+2)=f(x),且x0,2时,f(x)=1x,则方程f(x)=log8|x|在10,10内的根的个数为( )A12B10C9D86 复数z=(mR,i为虚数单位)在复平面上对应的点不可能位于( )A第一象限B第二象限C第三象限D第四象限7 已知双曲线=1的一个焦点与抛物线y2=4x的焦点重合,且双曲线的渐近线方程为y=x,则该双曲线的方程为( )A=1By2=1Cx2=1D=18 函数(,)的部分图象如图所示,则 f (0)的值为( )A. B.C. D. 【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.9 已知,则fff(2)的值为( )A0B2C4D810已知P(x,y)为区域内的任意一点,当该区域的面积为4时,z=2xy的最大值是( )A6B0C2D211数列an满足an+2=2an+1an,且a2014,a2016是函数f(x)=+6x1的极值点,则log2(a2000+a2012+a2018+a2030)的值是( )A2B3C4D512已知数列的首项为,且满足,则此数列的第4项是( )A1 B C. D二、填空题13已知,则的值为 14抛物线y2=4x上一点M与该抛物线的焦点F的距离|MF|=4,则点M的横坐标x=15对于函数,“的图象关于y轴对称”是“”的 条件 (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”)16已知椭圆中心在原点,一个焦点为F(2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是17已知函数为定义在区间2a,3a1上的奇函数,则a+b=18若点p(1,1)为圆(x3)2+y2=9的弦MN的中点,则弦MN所在直线方程为 三、解答题19等差数列an的前n项和为Sn,已知a1=10,a2为整数,且SnS4。(1)求an的通项公式;(2)设bn=,求数列bn的前n项和Tn。20已知函数f(x)=lnx的反函数为g(x)()若直线l:y=k1x是函数y=f(x)的图象的切线,直线m:y=k2x是函数y=g(x)图象的切线,求证:lm;()设a,bR,且ab,P=g(),Q=,R=,试比较P,Q,R的大小,并说明理由21在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为cos()=1,M,N分别为C与x轴,y轴的交点(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程22(本题满分12分)如图1在直角三角形ABC中,A=90,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将CDE沿DE折起,使点A在平面CDE内的射影恰好为M(I)求AM的长;()求面DCE与面BCE夹角的余弦值23已知函数f(x)=2cos2x+2sinxcosx1,且f(x)的周期为2()当时,求f(x)的最值;()若,求的值24(本小题满分12分)如图(1),在三角形中,为其中位线,且,若沿将三角形折起,使,构成四棱锥,且.(1)求证:平面 平面;(2)当 异面直线与所成的角为时,求折起的角度.酉阳土家族苗族自治县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:函数y=ax(b+1)(a0,a1)的图象在第一、三、四象限,根据图象的性质可得:a1,a0b10,即a1,b0,故选:B2 【答案】A【解析】解:设幂函数y=f(x)=x,把点(,)代入可得=,=,即f(x)=,故f(2)=,故选:A3 【答案】 A【解析】解:|BC|=1,点B的坐标为(,),故|OB|=1,BOC为等边三角形,BOC=,又AOC=,AOB=,cos()=,sin()=,sin()=cos=cos()=coscos()+sinsin() =+=,sin=sin()=sincos()cossin()=cos2sincos=(2cos21)sin=cossin=,故选:A【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题4 【答案】A【解析】解:以顶部抛物线顶点为坐标原点,抛物线的对称轴为y轴建立直角坐标系,易得抛物线过点(3,1),其方程为y=,那么正(主)视图上部分抛物线与矩形围成的部分面积S1=2=4,下部分矩形面积S2=24,故挖掘的总土方数为V=(S1+S2)h=2820=560m3故选:A【点评】本题是对抛物线方程在实际生活中应用的考查,考查学生的计算能力,属于中档题5 【答案】D【解析】解:函数y=f(x)为偶函数,且满足f(x+2)=f(x),f(x+4)=f(x+2+2)=f(x+2)=f(x),偶函数y=f(x)为周期为4的函数,由x0,2时,f(x)=1x,可作出函数f(x)在10,10的图象,同时作出函数f(x)=log8|x|在10,10的图象,交点个数即为所求数形结合可得交点个为8,故选:D6 【答案】C【解析】解:z=+i,当1+m0且1m0时,有解:1m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,有解:m1;当1+m0且1m0时,无解;故选:C【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题7 【答案】B【解析】解:已知抛物线y2=4x的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=x,则有a2+b2=c2=10和=,解得a=3,b=1所以双曲线的方程为:y2=1故选B【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用属于基础题8 【答案】D【解析】易知周期,.由(),得(),可得,所以,则,故选D.9 【答案】C【解析】解:20f(2)=0f(f(2)=f(0)0=0f(0)=2即f(f(2)=f(0)=220f(2)=22=4即ff(2)=f(f(0)=f(2)=4故选C10【答案】A 解析:解:由作出可行域如图,由图可得A(a,a),B(a,a),由,得a=2A(2,2),化目标函数z=2xy为y=2xz,当y=2xz过A点时,z最大,等于22(2)=6故选:A11【答案】C【解析】解:函数f(x)=+6x1,可得f(x)=x28x+6,a2014,a2016是函数f(x)=+6x1的极值点,a2014,a2016是方程x28x+6=0的两实数根,则a2014+a2016=8数列an中,满足an+2=2an+1an,可知an为等差数列,a2014+a2016=a2000+a2030,即a2000+a2012+a2018+a2030=16,从而log2(a2000+a2012+a2018+a2030)=log216=4故选:C【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键12【答案】B【解析】 二、填空题13【答案】【解析】, , 故答案为.考点:1、同角三角函数之间的关系;2、两角和的正弦公式.14【答案】3 【解析】解:抛物线y2=4x=2px,p=2,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=4=x+=4,x=3,故答案为:3【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解15【答案】必要而不充分【解析】试题分析:充分性不成立,如图象关于y轴对称,但不是奇函数;必要性成立,所以的图象关于y轴对称.考点:充要关系【名师点睛】充分、必要条件的三种判断方法1.定义法:直接判断“若p则q”、“若q则p”的真假并注意和图示相结合,例如“pq”为真,则p是q的充分条件2.等价法:利用pq与非q非p,qp与非p非q,pq与非q非p的等价关系,对于条件或结论是否定式的命题,一般运用等价法3.集合法:若AB,则A是B的充分条件或B是A的必要条件;若AB,则A是B的充要条件16【答案】 【解析】解:已知为所求;故答案为:【点评】本题主要考查椭圆的标准方程属基础题17【答案】2 【解析】解:f(x)是定义在2a,3a1上奇函数,定义域关于原点对称,即2a+3a1=0,a=1,函数为奇函数,f(x)=,即b2x1=b+2x,b=1即a+b=2,故答案为:218【答案】:2xy1=0解:P(1,1)为圆(x3)2+y2=9的弦MN的中点,圆心与点P确定的直线斜率为=,弦MN所在直线的斜率为2,则弦MN所在直线的方程为y1=2(x1),即2xy1=0故答案为:2xy1=0三、解答题19【答案】【解析】(1)由a1=10,a2为整数,且SnS4得a40,a50,即10+3d0,10+4d0,解得d,d=3,an的通项公式为an=133n。(2)bn=,Tn=b1+b2+bn=(+)=()=。20【答案】 【解析】解:()函数f(x)=lnx的反函数为g(x)g(x)=ex,f(x)=ln(x),则函数的导数g(x)=ex,f(x)=,(x0),设直线m与g(x)相切与点(x1,),则切线斜率k2=,则x1=1,k2=e,设直线l与f(x)相切与点(x2,ln(x2),则切线斜率k1=,则x2=e,k1=,故k2k1=e=1,则lm()不妨设ab,PR=g()=0,PR,PQ=g()=,令(x)=2xex+ex,则(x)=2exex0,则(x)在(0,+)上为减函数,故(x)(0)=0,取x=,则ab+0,PQ,=1令t(x)=1+,则t(x)=0,则t(x)在(0,+)上单调递增,故t(x)t(0)=0,取x=ab,则1+0,RQ,综上,PQR,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大21【答案】 【解析】解:()由从而C的直角坐标方程为即=0时,=2,所以M(2,0)()M点的直角坐标为(2,0)N点的直角坐标为所以P点的直角坐标为,则P点的极坐标为,所以直线OP的极坐标方程为,(,+)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化22【答案】解:(I)由已知可得AMCD,又M为CD的中点,; 3分(II)在平面ABED内,过AD的中点O作AD的垂线OF,交BE于F点,以OA为x轴,OF为y轴,OC为z轴建立坐标系,可得,5分设为面BCE的法向量,由可得=(1,2,),cos,=,面DCE与面BCE夹角的余弦值为 4分23【答案】 【解析】(本题满分为13分)解:()
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年抗菌药物试题含答案
- 2025年实验室检验诊断技术应用考核答案及解析
- 精米糠油功能成分提取与鉴定-洞察及研究
- 磨具行业可持续发展-洞察及研究
- 数字化建模在绿色建筑中的应用-洞察及研究
- 网络化协同设计平台-洞察及研究
- 2025年外科学手术风险评估与术后护理策略探讨卷答案及解析
- 2025年儿科传染病诊断治疗模拟试卷答案及解析
- 2025年口腔科学科的牙周病治疗新技术考察试卷答案及解析
- 2024-2025学年云南省昭通一中教研联盟高二下学期期末质量检测英语试题(B卷)
- 中医高血压糖尿病课件
- 外带药输液协议书
- 微信小程序电商代运营及品牌授权合作合同
- 2025年天津市春季高考升学考试全真模拟试卷(二)中职英语(无答案)
- 初中数学问题解决策略 特殊化教案2024-2025学年北师大版(2024)七年级数学下册
- 古代汉语平仄试题及答案
- 钢卷储存及装卸安全管理办法
- 马工程《艺术学概论》-绪论省公开课一等奖全国示范课微课金奖课件
- 巡视巡察工作流程
- 中秋国庆教师廉洁教育
- 产品安全防护培训课件
评论
0/150
提交评论