宝塔区实验中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
宝塔区实验中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
宝塔区实验中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
宝塔区实验中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
宝塔区实验中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷宝塔区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知全集U=0,1,2,3,4,集合A=0,1,3,B=0,1,4,则(UA)B为( )A0,1,2,4B0,1,3,4C2,4D42 “a0”是“方程y2=ax表示的曲线为抛物线”的( )条件A充分不必要B必要不充分C充要D既不充分也不必要3 函数y=2x2e|x|在2,2的图象大致为( )ABCD4 已知函数f(x)=x2,则函数y=f(x)的大致图象是( )ABCD5 如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,将线段竖直放置在同一水平线上,则大致的图形是( )ABCD6 一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )AB(4+)CD7 已知ACBC,AC=BC,D满足=t+(1t),若ACD=60,则t的值为( )ABC1D8 ABC的三内角A,B,C所对边长分别是a,b,c,设向量,若,则角B的大小为( )ABCD9 若关于的不等式的解集为或,则的取值为( )A B C D10已知圆方程为,过点与圆相切的直线方程为( )A B C D11已知直线:过椭圆的上顶点和左焦点,且被圆截得的弦长为,若,则椭圆离心率的取值范围是( )(A) ( B ) (C) (D) 12二项式的展开式中项的系数为10,则( )A5 B6 C8 D10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力二、填空题13在数列中,则实数a=,b=14设,则的最小值为 。15设函数f(x)=则函数y=f(x)与y=的交点个数是16设m是实数,若xR时,不等式|xm|x1|1恒成立,则m的取值范围是17已知函数f(x)的定义域为1,5,部分对应值如下表,f(x)的导函数y=f(x)的图象如图示 x1045f(x)1221下列关于f(x)的命题:函数f(x)的极大值点为0,4;函数f(x)在0,2上是减函数;如果当x1,t时,f(x)的最大值是2,那么t的最大值为4;当1a2时,函数y=f(x)a有4个零点;函数y=f(x)a的零点个数可能为0、1、2、3、4个其中正确命题的序号是18设函数,其中x表示不超过x的最大整数若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是三、解答题19(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)(不等式选做题)设,且,则的最小值为(几何证明选做题)如图,中,以为直径的半圆分别交于点,若,则20生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标70,76)76,82)82,88)88,94)94,100元件A81240328元件B71840296()试分别估计元件A,元件B为正品的概率;()生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元在()的前提下,()记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;()求生产5件元件B所获得的利润不少于140元的概率21已知定义域为R的函数是奇函数(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)022在中已知,试判断的形状.23已知椭圆C: +=1(ab0)与双曲线y2=1的离心率互为倒数,且直线xy2=0经过椭圆的右顶点()求椭圆C的标准方程;()设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求OMN面积的取值范围24如图,在长方体ABCDA1B1C1D1中,AB=2,AD=1,A1A=1,(1)求证:直线BC1平面D1AC;(2)求直线BC1到平面D1AC的距离宝塔区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:U=0,1,2,3,4,集合A=0,1,3,CUA=2,4,B=0,1,4,(CUA)B=0,1,2,4故选:A【点评】本题考查集合的交、交、补集的混合运算,是基础题解题时要认真审题,仔细解答2 【答案】A【解析】解:若方程y2=ax表示的曲线为抛物线,则a0“a0”是“方程y2=ax表示的曲线为抛物线”的充分不必要条件故选A【点评】本题主要考查充分条件和必要条件的判断,利用抛物线的定义是解决本题的关键,比较基础3 【答案】D【解析】解:f(x)=y=2x2e|x|,f(x)=2(x)2e|x|=2x2e|x|,故函数为偶函数,当x=2时,y=8e2(0,1),故排除A,B; 当x0,2时,f(x)=y=2x2ex,f(x)=4xex=0有解,故函数y=2x2e|x|在0,2不是单调的,故排除C,故选:D4 【答案】A【解析】解:由题意可得,函数的定义域x0,并且可得函数为非奇非偶函数,满足f(1)=f(1)=1,可排除B、C两个选项当x0时,t=在x=e时,t有最小值为函数y=f(x)=x2,当x0时满足y=f(x)e20,因此,当x0时,函数图象恒在x轴上方,排除D选项故选A5 【答案】C【解析】根据题意有:A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|=13。(2)l2长度计算将平面A1B1C1D1沿Z轴正向平移AA1个单位,得到平面A2B2C2D2;显然有:A2的坐标为:(0,0,24),B2的坐标为(11,0,24),C2的坐标为(11,7,24),D2的坐标为(0,7,24);显然平面A2B2C2D2和平面ABCD关于平面A1B1C1D1对称。设AE与的延长线与平面A2B2C2D2相交于:E2(xE2,yE2,24)根据相识三角形易知:xE2=2xE=24=8,yE2=2yE=23=6,即:E2(8,6,24)根据坐标可知,E2在长方形A2B2C2D2内。6 【答案】 D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是2,四棱锥的底面是一个边长是2的正方形,四棱锥的高与圆锥的高相同,高是=,几何体的体积是=,故选D【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较特殊,不容易看出直观图,需要仔细观察7 【答案】A【解析】解:如图,根据题意知,D在线段AB上,过D作DEAC,垂足为E,作DFBC,垂足为F;若设AC=BC=a,则由得,CE=ta,CF=(1t)a;根据题意,ACD=60,DCF=30;即;解得故选:A【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义8 【答案】B【解析】解:若,则(a+b)(sinBsinA)sinC(a+c)=0,由正弦定理可得:(a+b)(ba)c(a+c)=0,化为a2+c2b2=ac,cosB=,B(0,),B=,故选:B【点评】本题考查了正弦定理与余弦定理的应用、向量数量积运算性质,考查了推理能力与计算能力,是一道基础题9 【答案】D【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程,解得,其对应的根分别为,所以,故选D.考点:不等式与方程的关系.10【答案】A【解析】试题分析:圆心,设切线斜率为,则切线方程为,由,所以切线方程为,故选A.考点:直线与圆的位置关系11【答案】 B 【解析】依题意,设圆心到直线的距离为,则解得。又因为,所以解得。于是,所以解得故选B12【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A二、填空题13【答案】a=,b= 【解析】解:由5,10,17,ab,37知,ab=26,由3,8,a+b,24,35知,a+b=15,解得,a=,b=;故答案为:,【点评】本题考查了数列的性质的判断与归纳法的应用14【答案】9【解析】由柯西不等式可知15【答案】4 【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4故答案为:416【答案】0,2 【解析】解:|xm|x1|(xm)(x1)|=|m1|,故由不等式|xm|x1|1恒成立,可得|m1|1,1m11,求得0m2,故答案为:0,2【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,函数的恒成立问题,体现了转化的数学思想,属于基础题17【答案】 【解析】解:由导数图象可知,当1x0或2x4时,f(x)0,函数单调递增,当0x2或4x5,f(x)0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以正确;正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x1,t函数f(x)的最大值是4,当2t5,所以t的最大值为5,所以不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)a有几个零点,所以不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)1或1f(2)2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以正确,综上正确的命题序号为故答案为:【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键18【答案】(1,) 【解析】解:当2x1时,x=2,此时f(x)=xx=x+2当1x0时,x=1,此时f(x)=xx=x+1当0x1时,1x10,此时f(x)=f(x1)=x1+1=x当1x2时,0x11,此时f(x)=f(x1)=x1当2x3时,1x12,此时f(x)=f(x1)=x11=x2当3x4时,2x13,此时f(x)=f(x1)=x12=x3设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(2,1),D(4,1)时有3个不同的交点,当经过点B(1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(1,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想三、解答题19【答案】【解析】AB20【答案】 【解析】解:()元件A为正品的概率约为 元件B为正品的概率约为 ()()生产1件元件A和1件元件B可以分为以下四种情况:两件正品,A次B正,A正B次,A次B次随机变量X的所有取值为90,45,30,15 P(X=90)=;P(X=45)=;P(X=30)=;P(X=15)=随机变量X的分布列为:EX= ()设生产的5件元件B中正品有n件,则次品有5n件依题意得 50n10(5n)140,解得所以 n=4或n=5 设“生产5件元件B所获得的利润不少于140元”为事件A,则P(A)=21【答案】 【解析】解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1;从而有;经检验,符合题意;(2)由(1)知,f(x)=+;由y=2x的单调性可推知f(x)在R上为减函数; (3)因为f(x)在R上为减函数且是奇函数,从而不等式f(1+|x|)+f(x)0等价于f(1+|x|)f(x),即f(1+|x|)f(x); 又因f(x)是R上的减函数,由上式推得1+|x|x,解得xR22【答案】为等边三角形【解析】试题分析:由,根据正弦定理得出,在结合,可推理得到,即可可判定三角形的形状考点:正弦定理;三角形形状的判定23【答案】 【解析】解:()双曲线的离心率为,所以椭圆的离心率,又直线xy2=0经过椭圆的右顶点,右顶点为(2,0),即a=2,c=,b=1,椭圆方程为:()由题意可设直线的方程为:y=kx+m(k0,m0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m21)=0则,于是又直线OM、MN、ON的斜率依次成等比数列由m0得:又由=64k2m216(1+4k2)(m21)=16(4k2m2+1)0,得:0m22显然m21(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾) 设原点O到直线的距离为d,则故由m的取值范围可得OMN面积的取值范围为(0,1)【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论