巫溪县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
巫溪县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
巫溪县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
巫溪县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
巫溪县第一中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

巫溪县第一中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在区域内任意取一点P(x,y),则x2+y21的概率是( )A0BCD2 若全集U=1,0,1,2,P=xZ|x22,则UP=( )A2B0,2C1,2D1,0,23 在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )ABCD4 设函数的集合,平面上点的集合,则在同一直角坐标系中,P中函数的图象恰好经过Q中两个点的函数的个数是A4B6C8D105 设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()。A3B4C5D66 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A3BC2D67 已知集合A=y|y=x2+2x3,则有( )AABBBACA=BDAB=8 已知偶函数f(x)满足当x0时,3f(x)2f()=,则f(2)等于( )ABCD9 某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A100B150C200D25010学校将5个参加知识竞赛的名额全部分配给高一年级的4个班级,其中甲班级至少分配2个名额,其它班级可以不分配或分配多个名额,则不同的分配方案共有( )A20种B24种C26种D30种11函数在一个周期内的图象如图所示,此函数的解析式为( )A B C D12已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于( )A8B1C5D1二、填空题13已知(ax+1)5的展开式中x2的系数与的展开式中x3的系数相等,则a=14在ABC中,点D在边AB上,CDBC,AC=5,CD=5,BD=2AD,则AD的长为15已知过双曲线的右焦点的直线交双曲线于两点,连结,若,且,则双曲线的离心率为( )A B C D【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想16已知集合M=x|x|2,xR,N=xR|(x3)lnx2=0,那么MN=17直线l过原点且平分平行四边形ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为18若等比数列an的前n项和为Sn,且,则=三、解答题19如图,在四棱锥PABCD中,ADBC,ABAD,ABPA,BC=2AB=2AD=4BE,平面PAB平面ABCD,()求证:平面PED平面PAC;()若直线PE与平面PAC所成的角的正弦值为,求二面角APCD的平面角的余弦值20已知函数f(x)=sin(x+)+1(0,)的最小正周期为,图象过点P(0,1)()求函数f(x)的解析式;()设函数 g(x)=f(x)+cos2x1,将函数 g(x)图象上所有的点向右平行移动个单位长度后,所得的图象在区间(0,m)内是单调函数,求实数m的最大值21在ABC中,cos2A3cos(B+C)1=0(1)求角A的大小;(2)若ABC的外接圆半径为1,试求该三角形面积的最大值22在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x)()求矩阵M的逆矩阵M1;()求曲线4x+y1=0在矩阵M的变换作用后得到的曲线C的方程 23已知函数f(x)=x3+ax+2()求证:曲线=f(x)在点(1,f(1)处的切线在y轴上的截距为定值;()若x0时,不等式xex+mf(x)am2x恒成立,求实数m的取值范围 24已知定义在的一次函数为单调增函数,且值域为(1)求的解析式;(2)求函数的解析式并确定其定义域巫溪县第一中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:根据题意,如图,设O(0,0)、A(1,0)、B(1,1)、C(0,1),分析可得区域表示的区域为以正方形OABC的内部及边界,其面积为1;x2+y21表示圆心在原点,半径为1的圆,在正方形OABC的内部的面积为=,由几何概型的计算公式,可得点P(x,y)满足x2+y21的概率是=;故选C【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算2 【答案】A【解析】解:x22xP=xZ|x22=x|x,xZ|=1,0,1,又全集U=1,0,1,2,UP=2故选:A3 【答案】C【解析】解:如图所示,BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A=弦长超过圆内接等边三角形的边长=弦中点在内切圆内,由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是故选C【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答4 【答案】B【解析】本题考查了对数的计算、列举思想a时,不符;a0时,ylog2x过点(,1),(1,0),此时b0,b1符合;a时,ylog2(x)过点(0,1),(,0),此时b0,b1符合;a1时,ylog2(x1)过点(,1),(0,0),(1,1),此时b1,b1符合;共6个5 【答案】B【解析】由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B6 【答案】C【解析】解:椭圆的半焦距为2,离心率e=,c=2,a=3,b=2b=2故选:C【点评】本题主要考查了椭圆的简单性质属基础题7 【答案】B【解析】解:y=x2+2x3=(x+1)24,y4则A=y|y4x0,x+2=2(当x=,即x=1时取“=”),B=y|y2,BA故选:B【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项8 【答案】D【解析】解:当x0时,3f(x)2f()=,3f()2f(x)=,3+2得:5f(x)=,故f(x)=,又函数f(x)为偶函数,故f(2)=f(2)=,故选:D【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x0时,函数f(x)的解析式,是解答的关键9 【答案】A【解析】解:分层抽样的抽取比例为=,总体个数为3500+1500=5000,样本容量n=5000=100故选:A10【答案】A【解析】解:甲班级分配2个名额,其它班级可以不分配名额或分配多个名额,有1+6+3=10种不同的分配方案;甲班级分配3个名额,其它班级可以不分配名额或分配多个名额,有3+3=6种不同的分配方案;甲班级分配4个名额,其它班级可以不分配名额或分配多个名额,有3种不同的分配方案;甲班级分配5个名额,有1种不同的分配方案故共有10+6+3+1=20种不同的分配方案,故选:A【点评】本题考查分类计数原理,注意分类时做到不重不漏,是一个中档题,解题时容易出错,本题应用分类讨论思想11【答案】B【解析】考点:三角函数的图象与性质12【答案】B【解析】解:函数f(2x+1)=3x+2,且f(a)=2,令3x+2=2,解得x=0,a=20+1=1故选:B二、填空题13【答案】 【解析】解:(ax+1)5的展开式中x2的项为=10a2x2,x2的系数为10a2,与的展开式中x3的项为=5x3,x3的系数为5,10a2=5,即a2=,解得a=故答案为:【点评】本题主要考查二项式定理的应用,利用展开式的通项公式确定项的系数是解决本题的关键14【答案】5 【解析】解:如图所示:延长BC,过A做AEBC,垂足为E,CDBC,CDAE,CD=5,BD=2AD,解得AE=,在RTACE,CE=,由得BC=2CE=5,在RTBCD中,BD=10,则AD=5,故答案为:5【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题15【答案】B【解析】16【答案】1,1 【解析】解:合M=x|x|2,xR=x|2x2,N=xR|(x3)lnx2=0=3,1,1,则MN=1,1,故答案为:1,1,【点评】本题主要考查集合的基本运算,比较基础17【答案】 【解析】解:直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,由斜截式可得直线l的方程为,故答案为【点评】本题考查直线的斜率公式,直线方程的斜截式18【答案】 【解析】解:等比数列an的前n项和为Sn,且,S4=5S2,又S2,S4S2,S6S4成等比数列,(S4S2)2=S2(S6S4),(5S2S2)2=S2(S65S2),解得S6=21S2,=故答案为:【点评】本题考查等比数列的求和公式和等比数列的性质,用S2表示S4和S6是解决问题的关键,属中档题三、解答题19【答案】 【解析】解:()平面PAB平面ABCD,平面PAB平面ABCD=AB,ABPAPA平面ABCD结合ABAD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系oxyz,如图所示可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,) (0),得,DEAC且DEAP,AC、AP是平面PAC内的相交直线,ED平面PACED平面PED平面PED平面PAC()由()得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为,则,解之得=20,=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y0,z0),由, ,得到,令x0=1,可得y0=z0=1,得=(1,1,1)cos,由图形可得二面角APCD的平面角是锐角,二面角APCD的平面角的余弦值为【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角APCD的余弦值着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题20【答案】 【解析】解:()函数f(x)=sin(x+)+1(0,)的最小正周期为,=2,又由函数f(x)的图象过点P(0,1),sin=0,=0,函数f(x)=sin2x+1;()函数 g(x)=f(x)+cos2x1=sin2x+cos2x=sin(2x+),将函数 g(x)图象上所有的点向右平行移动个单位长度后,所得函数的解析式是:h(x)=sin2(x)+=sin(2x),x(0,m),2x(,2m),又由h(x)在区间(0,m)内是单调函数,2m,即m,即实数m的最大值为【点评】本题考查的知识点是正弦型函数的图象和性质,函数图象的平移变换,熟练掌握正弦型函数的图象和性质,是解答的关键21【答案】 【解析】(本题满分为12分)解:(1)cos2A3cos(B+C)1=02cos2A+3cosA2=0,2分解得:cosA=,或2(舍去),4分又0A,A=6分(2)a=2RsinA=,又a2=b2+c22bccosA=b2+c2bcbc,bc3,当且仅当b=c时取等号,SABC=bcsinA=bc,三角形面积的最大值为 22【答案】 【解析】解:()设点P(x,y)在矩阵M对应的变换作用下所得的点为P(x,y),则即=,M=又det(M)=3,M1=;()设点A(x,y)在矩阵M对应的变换作用下所得的点为A(x,y),则=M1=,即,代入4x+y1=0,得,即变换后的曲线方程为x+2y+1=0【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题 23【答案】 【解析】()证明:f(x)的导数f(x)=x2+a,即有f(1)=a+,f(1)=1+a,则切线方程为y(a+)=(1+a)(x1),令x=0,得y=为定值; ()解:由xex+mf(x)am2x对x0时恒成立,得xex+mx2m2x0对x0时恒成立,即ex+mxm20对x0时恒成立,则(ex+mxm2)min0,记g(x)=ex+mxm2,g(x)=ex+m,由x0,ex1,若m1,g(x)0,g(x)在0,+)上为增函数,则有1m1,若m1,则当x(0,ln(m)时,g(x)0,g(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论