永吉县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第1页
永吉县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第2页
永吉县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第3页
永吉县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第4页
永吉县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

永吉县高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 给出下列各函数值:sin100;cos(100);tan(100);其中符号为负的是( )ABCD2 已知函数f(x)是R上的奇函数,且当x0时,f(x)=x32x2,则x0时,函数f(x)的表达式为f(x)=( )Ax3+2x2Bx32x2Cx3+2x2Dx32x23 设是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A1 B2 C4 D64 若动点分别在直线: 和:上移动,则中点所在直线方程为( )A B C D 5 设P是椭圆+=1上一点,F1、F2是椭圆的焦点,若|PF1|等于4,则|PF2|等于( )A22B21C20D136 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A4 B8 C12 D20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力7 已知f(x)是定义在R上周期为2的奇函数,当x(0,1)时,f(x)=3x1,则f(log35)=( )ABC4D8 已知数列的首项为,且满足,则此数列的第4项是( )A1 B C. D9 已知两条直线,其中为实数,当这两条直线的夹角在内变动时,的取值范围是( )A B C D10阅读如图所示的程序框图,运行相应的程序若该程序运行后输出的结果不大于20,则输入的整数i的最大值为( )A3B4C5D611等比数列an满足a1=3,a1+a3+a5=21,则a2a6=( )A6B9C36D7212方程表示的曲线是( )A一个圆 B 两个半圆 C两个圆 D半圆二、填空题13某辆汽车每次加油都把油箱加满,如表记录了该车相邻两次加油时的情况加油时间加油量(升)加油时的累计里程(千米)2015年5月1日12350002015年5月15日4835600注:“累计里程”指汽车从出厂开始累计行驶的路程在这段时间内,该车每100千米平均耗油量为升14函数f(x)=的定义域是15函数f(x)=ax+4的图象恒过定点P,则P点坐标是16直线l:(t为参数)与圆C:(为参数)相交所得的弦长的取值范围是17直角坐标P(1,1)的极坐标为(0,0)18如图,一船以每小时20km的速度向东航行,船在A处看到一个灯塔B在北偏东60方向,行驶4小时后,船到达C处,看到这个灯塔在北偏东15方向,这时船与灯塔间的距离为km三、解答题19 (本题满分12分)在如图所示的几何体中,四边形为矩形,直线平面,点在棱上.(1)求证:;(2)若是的中点,求异面直线与所成角的余弦值;(3)若,求二面角的余弦值.20(本小题满分12分)已知直三棱柱中,上底面是斜边为的直角三角形,分别是的中点.(1)求证:平面; (2)求证:平面平面.21已知f(x)是定义在1,1上的奇函数,f(1)=1,且若a、b1,1,a+b0,恒有0,(1)证明:函数f(x)在1,1上是增函数;(2)解不等式;(3)若对x1,1及a1,1,不等式f(x)m22am+1恒成立,求实数m的取值范围22(本小题满分12分)中央电视台电视公开课开讲了需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如下表所示:大学甲乙丙丁人数812812从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.23(本小题满分13分)已知函数,()讨论的单调性;()证明:当时,有唯一的零点,且24在ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB(1)求B;(2)若b=2,求ABC面积的最大值永吉县高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】B【解析】解:sin1000,cos(100)=cos1000,tan(100)=tan1000,sin0,cos=1,tan0,0,其中符号为负的是,故选:B【点评】本题主要考查三角函数值的符号的判断,判断角所在的象限是解决本题的关键,比较基础2 【答案】A【解析】解:设x0时,则x0,因为当x0时,f(x)=x32x2所以f(x)=(x)32(x)2=x32x2,又因为f(x)是定义在R上的奇函数,所以f(x)=f(x),所以当x0时,函数f(x)的表达式为f(x)=x3+2x2,故选A3 【答案】B【解析】试题分析:设的前三项为,则由等差数列的性质,可得,所以,解得,由题意得,解得或,因为是递增的等差数列,所以,故选B考点:等差数列的性质4 【答案】【解析】考点:直线方程5 【答案】A【解析】解:P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,|PF2|=213|PF1|=264=22故选:A【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用6 【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,所以此四棱锥体积为,故选C.7 【答案】B【解析】解:f(x)是定义在R上周期为2的奇函数,f(log35)=f(log352)=f(log3),x(0,1)时,f(x)=3x1f(log3)故选:B8 【答案】B【解析】 9 【答案】C【解析】1111试题分析:由直线方程,可得直线的倾斜角为,又因为这两条直线的夹角在,所以直线的倾斜角的取值范围是且,所以直线的斜率为且,即或,故选C.考点:直线的倾斜角与斜率.10【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件ni,s=2,n=1满足条件ni,s=5,n=2满足条件ni,s=10,n=3满足条件ni,s=19,n=4满足条件ni,s=36,n=5所以,若该程序运行后输出的结果不大于20,则输入的整数i的最大值为4,有n=4时,不满足条件ni,退出循环,输出s的值为19故选:B【点评】本题主要考查了循环结构的程序框图,属于基础题11【答案】D【解析】解:设等比数列an的公比为q,a1=3,a1+a3+a5=21,3(1+q2+q4)=21,解得q2=2则a2a6=9q6=72故选:D12【答案】A【解析】试题分析:由方程,两边平方得,即,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.二、填空题13【答案】8升 【解析】解:由表格信息,得到该车加了48升的汽油,跑了600千米,所以该车每100千米平均耗油量486=8故答案是:814【答案】x|x2且x3 【解析】解:根据对数函数及分式有意义的条件可得解可得,x2且x3故答案为:x|x2且x315【答案】(0,5) 【解析】解:y=ax的图象恒过定点(0,1),而f(x)=ax+4的图象是把y=ax的图象向上平移4个单位得到的,函数f(x)=ax+4的图象恒过定点P(0,5),故答案为:(0,5)【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题16【答案】4,16 【解析】解:直线l:(t为参数),化为普通方程是=,即y=tanx+1;圆C的参数方程(为参数),化为普通方程是(x2)2+(y1)2=64;画出图形,如图所示;直线过定点(0,1),直线被圆截得的弦长的最大值是2r=16,最小值是2=2=2=4弦长的取值范围是4,16故答案为:4,16【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题17【答案】 【解析】解:=,tan=1,且0,=点P的极坐标为故答案为:18【答案】 【解析】解:根据题意,可得出B=7530=45,在ABC中,根据正弦定理得:BC=海里,则这时船与灯塔的距离为海里故答案为三、解答题19【答案】【解析】【命题意图】本题考查了线面垂直、线线垂直等位置关系及线线角、二面角的度量,突出考查逻辑推理能力及利用坐标系解决空间角问题,属中等难度.(3)因为平面,所以平面的一个法向量.由知为的三等分点且此时.在平面中,.所以平面的一个法向量.10分所以,又因为二面角的大小为锐角,所以该二面角的余弦值为.12分20【答案】(1)详见解析;(2)详见解析.【解析】试题解析:证明:(1)连接,直三棱柱中,四边形是矩形,故点在上,且为的中点,在中,分别是的中点,.又平面,平面,平面.考点:1.线面平行的判定定理;2.面面垂直的判定定理.21【答案】 【解析】解:(1)证明:任取x1、x21,1,且x1x2,则f(x1)f(x2)=f(x1)+f(x2)0,即0,x1x20,f(x1)f(x2)0则f(x)是1,1上的增函数;(2)由于f(x)是1,1上的增函数,不等式即为1x+1,解得x1,即解集为,1);(3)要使f(x)m22am+1对所有的x1,1,a1,1恒成立,只须f(x)maxm22am+1,即1m22am+1对任意的a1,1恒成立,亦即m22am0对任意的a1,1恒成立令g(a)=2ma+m2,只须,解得m2或m2或m=0,即为所求22【答案】(1)甲,乙,丙,丁;(2).【解析】试题分析:(1)从这名学生中按照分层抽样的方式抽取名学生,则各大学人数分别为甲,乙,丙,丁;(2)利用列举出从参加问卷调查的名学生中随机抽取两名学生的方法共有种,这来自同一所大学的取法共有种,再利用古典慨型的概率计算公式即可得出.试题解析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3. (2)设乙中3人为,丁中3人为,从这6名学生中随机选出2名学生发言的结果为,共15种, 这2名同学来自同一所大学的结果共6种,所以所求概率为.考点:1、分层抽样方法的应用;2、古典概型概率公式.23【答案】(本小题满分13分)解:(), (1分)当时,解得或,解得,的递增区间为和,的递减区间为 (4分)当时,的递增区间为,递减区间为 (5分)当时,解得,解得或的递增区间为,的递减区间为和 (7分)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论