




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安乡县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设函数f(x)=,则f(1)=( )A0B1C2D32 已知曲线的焦点为,过点的直线与曲线交于两点,且,则的面积等于( )A B C D3 在ABC中,AB边上的中线CO=2,若动点P满足=(sin2)+(cos2)(R),则(+)的最小值是( )A1B1C2D04 某几何体的三视图如图所示,则该几何体的表面积为( )A8+2B8+8C12+4D16+45 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( )A2:1B5:2C1:4D3:16 在中,若,则( )A B C. D7 函数f(x)=lnx+1的图象大致为( )ABCD8 某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S的值为( )A9.6B7.68C6.144D4.91529 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )Ak7Bk6Ck5Dk410若ab0,则下列不等式不成立是( )ABC|a|b|Da2b211设定义域为(0,+)的单调函数f(x),对任意的x(0,+),都有ff(x)lnx=e+1,若x0是方程f(x)f(x)=e的一个解,则x0可能存在的区间是( )A(0,1)B(e1,1)C(0,e1)D(1,e)12若函数y=f(x)是y=3x的反函数,则f(3)的值是( )A0B1CD3二、填空题13已知f(x)=,x0,若f1(x)=f(x),fn+1(x)=f(fn(x),nN+,则f2015(x)的表达式为14设满足条件,若有最小值,则的取值范围为 15设函数f(x)=,则f(f(2)的值为16设数列an满足a1=1,且an+1an=n+1(nN*),则数列的前10项的和为17设函数f(x)=则函数y=f(x)与y=的交点个数是18已知点A的坐标为(1,0),点B是圆心为C的圆(x1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为 三、解答题19已知曲线(,)在处的切线与直线平行(1)讨论的单调性;(2)若在,上恒成立,求实数的取值范围20(本小题满分12分)已知函数()(1)当时,求函数在上的最大值和最小值;(2)当时,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由;21如图,正方形ABCD中,以D为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连接CF并延长交AB于点E()求证:AE=EB;()若EFFC=,求正方形ABCD的面积 22已知在等比数列an中,a1=1,且a2是a1和a31的等差中项(1)求数列an的通项公式;(2)若数列bn满足b1+2b2+3b3+nbn=an(nN*),求bn的通项公式bn23已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是(1)求椭圆E的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标 24已知命题p:x2,4,x22x2a0恒成立,命题q:f(x)=x2ax+1在区间上是增函数若pq为真命题,pq为假命题,求实数a的取值范围安乡县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:f(x)=,f(1)=ff(7)=f(5)=3故选:D2 【答案】C【解析】,联立可得,(由,得或)考点:抛物线的性质3 【答案】 C【解析】解: =(sin2)+(cos2)(R),且sin2+cos2=1,=(1cos2)+(cos2)=+cos2(),即=cos2(),可得=cos2,又cos20,1,P在线段OC上,由于AB边上的中线CO=2,因此(+)=2,设|=t,t0,2,可得(+)=2t(2t)=2t24t=2(t1)22,当t=1时,( +)的最小值等于2故选C【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题4 【答案】D【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA1=2,AB=2,高为,根据三视图得出侧棱长度为=2,该几何体的表面积为2(2+22+22)=16,故选:D【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题5 【答案】D【解析】解:设球的半径为R,圆锥底面的半径为r,则r2=4R2=,r=球心到圆锥底面的距离为=圆锥的高分别为和两个圆锥的体积比为: =1:3故选:D6 【答案】B【解析】考点:正弦定理的应用.7 【答案】A【解析】解:f(x)=lnx+1,f(x)=,f(x)在(0,4)上单调递增,在(4,+)上单调递减;且f(4)=ln42+1=ln410;故选A【点评】本题考查了导数的综合应用及函数的图象的应用8 【答案】C【解析】解:由题意可知,设汽车x年后的价值为S,则S=15(120%)x,结合程序框图易得当n=4时,S=15(120%)4=6.144故选:C9 【答案】 C【解析】解:程序在运行过程中各变量值变化如下表: K S 是否继续循环循环前 1 0第一圈 2 2 是第二圈 3 7 是第三圈 4 18 是第四圈 5 41 是第五圈 6 88 否故退出循环的条件应为k5?故答案选C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误10【答案】A【解析】解:ab0,ab0,|a|b|,a2b2,即,可知:B,C,D都正确,因此A不正确故选:A【点评】本题考查了不等式的基本性质,属于基础题11【答案】 D【解析】解:由题意知:f(x)lnx为常数,令f(x)lnx=k(常数),则f(x)=lnx+k由ff(x)lnx=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f(x)=,x0f(x)f(x)=lnx+e,令g(x)=lnx+e=lnx,x(0,+)可判断:g(x)=lnx,x(0,+)上单调递增,g(1)=1,g(e)=10,x0(1,e),g(x0)=0,x0是方程f(x)f(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题12【答案】B【解析】解:指数函数的反函数是对数函数,函数y=3x的反函数为y=f(x)=log3x,所以f(9)=log33=1故选:B【点评】本题给出f(x)是函数y=3x(xR)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题二、填空题13【答案】 【解析】解:由题意f1(x)=f(x)=f2(x)=f(f1(x)=,f3(x)=f(f2(x)=,fn+1(x)=f(fn(x)=,故f2015(x)=故答案为:14【答案】【解析】解析:不等式表示的平面区域如图所示,由得,当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最小值;当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最大值,综上所述,15【答案】4 【解析】解:函数f(x)=,f(2)=42=,f(f(2)=f()=4故答案为:416【答案】 【解析】解:数列an满足a1=1,且an+1an=n+1(nN*),当n2时,an=(anan1)+(a2a1)+a1=n+2+1=当n=1时,上式也成立,an=2数列的前n项的和Sn=数列的前10项的和为故答案为:17【答案】4 【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4故答案为:418【答案】=1【解析】解:由题意得,圆心C(1,0),半径等于4,连接MA,则|MA|=|MB|,|MC|+|MA|=|MC|+|MB|=|BC|=4|AC|=2,故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,b=,椭圆的方程为=1故答案为: =1【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题三、解答题19【答案】(1)在,上单调递增,在,上单调递减;(2).【解析】试题解析:(1)由条件可得,由,可得,由,可得解得或;由,可得解得或所以在,上单调递增,在,上单调递减(2)令,当,时,由,可得在,时恒成立,即,故只需求出的最小值和的最大值由(1)可知,在上单调递减,在上单调递增,故的最小值为,由可得在区间上恒成立,所以在上的最大值为,所以只需,所以实数的取值范围是.考点:1、利用导数研究函数的单调性及求切线斜率;2、不等式恒成立问题.【方法点晴】本题主要考查的是利用导数研究函数的单调性、利用导数研究函数的最值、不等式的恒成立和导数的几何意义,属于难题利用导数研究函数的单调性进一步求函数最值的步骤:确定函数的定义域;对求导;令,解不等式得的范围就是递增区间;令,解不等式得的范围就是递减区间;根据单调性求函数的极值及最值(闭区间上还要注意比较端点处函数值的大小).20【答案】【解析】【命题意图】本题考查利用导数研究函数的单调性与最值、不等式的解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、探究能力、运算求解能力(2)当时,假设存在实数,使有最小值3,7分当时,在上单调递减,(舍去)8分当时,在上单调递减,在上单调递增,满足条件10分当时,在上单调递减,(舍去),11分综上,存在实数,使得当时,函数最小值是312分 21【答案】 【解析】证明:()以D为圆心、DA为半径的圆弧与以BC为直径半圆交于点F,且四边形ABCD为正方形,EA为圆D的切线,且EB是圆O的切线,由切割线定理得EA2=EFEC,故AE=EB()设正方形的边长为a,连结BF,BC为圆O的直径,BFEC,在RtBCE中,由射影定理得EFFC=BF2=,BF=,解得a=2,正方形ABCD的面积为4【点评】本题考查两线段相等的证明,考查正方形面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养 22【答案】 【解析】解:(1)设等比数列an的公比为q,由a2是a1和a31的等差中项得:2a2=a1+a31,2q=q2,q0,q=2,;(2)n=1时,由b1+2b2+3b3+nbn=an,得b1=a1=1n2时,由b1+2b2+3b3+nbn=an b1+2b2+3b3+(n1)bn1=an1得:,【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题23【答案】【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,1分c=ea=,故b=,4分所以,椭圆E的方程为,即x2+3y2=56分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k25=0;7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=,x1x2=;8分=(x1m,y1)=(x1m,k(x1+1),=(x2m,y2)=(x2m,k(x2+1);=(k2+1)x1x2+(k2m)(x1+x2)+k2+m2=m2+2m,要使上式与k无关,则有6m+14=0,解得m=;存在点M(,0)满
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冲出亚马逊课件
- 冰雪卫士课件
- 产品溯源风险防控-洞察及研究
- 文库发布:兵马俑课件
- 八音和鸣三课件
- 宇宙早期演化-第7篇-洞察及研究
- 税务内部审核管理办法
- 燃油补贴具体管理办法
- 狗肉检疫地方管理办法
- 充电员安全培训内容记录课件
- DBJ50-T-386-2021 建筑施工现场扬尘控制标准
- 数据科学与大数据技术导论-第1章-数据科学概述
- 《美丽中国是我家》-教学设计
- 实验动物微生物学和寄生虫学质量控制课件
- 视网膜分支静脉阻塞的护理课件
- 外墙保温一体板监理细则
- 云南省学校食堂“六T”实务管理验收评分标准(2021版)
- 复变函数与积分变换课件
- 弱电智能化建设报价清单
- 应急第一响应人线上理论考试
- 北科大工业生态学教学大纲
评论
0/150
提交评论