民权县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
民权县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
民权县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
民权县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
民权县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

民权县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数y=f(x)在1,3上单调递减,且函数f(x+3)是偶函数,则下列结论成立的是( )Af(2)f()f(5)Bf()f(2)f(5)Cf(2)f(5)f()Df(5)f()f(2)2 若a=ln2,b=5,c=xdx,则a,b,c的大小关系( )AabcBBbacCCbcaDcba3 若实数x,y满足,则(x3)2+y2的最小值是( )AB8C20D24 已知数列是各项为正数的等比数列,点、都在直线上,则数列的前项和为( )A B C D5 已知函数,则曲线在点处切线的斜率为( )A1 B C2 D6 已知函数f(x)=log2x,在下列区间中,包含f(x)零点的区间是( )A(0,1)B(1,2)C(2,4)D(4,+)7 若函数则的值为( )A5 B C D28 已知等比数列an的前n项和为Sn,若=4,则=( )A3B4CD139 若等式(2x1)2014=a0+a1x+a2x2+a2014x2014对于一切实数x都成立,则a0+1+a2+a2014=( )ABCD010记,那么ABCD11已知函数f(x)=m(x)2lnx(mR),g(x)=,若至少存在一个x01,e,使得f(x0)g(x0)成立,则实数m的范围是( )A(,B(,)C(,0D(,0)12四棱锥的底面为正方形,底面,若该四棱锥的所有顶点都在体积为同一球面上,则( )A3BCD【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力二、填空题13已知函数f(x)=sinxcosx,则=14设x,y满足约束条件,则目标函数z=2x3y的最小值是15已知z,为复数,i为虚数单位,(1+3i)z为纯虚数,=,且|=5,则复数=16直线2x+3y+6=0与坐标轴所围成的三角形的面积为17已知圆C1:(x2)2+(y3)2=1,圆C2:(x3)2+(y4)2=9,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值18设向量a(1,1),b(0,t),若(2ab)a2,则t_三、解答题19选修45:不等式选讲已知f(x)=|ax+1|(aR),不等式f(x)3的解集为x|2x1()求a的值;()若恒成立,求k的取值范围 20提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20x200时,车流速度v是车流密度x的一次函数()当0x200时,求函数v(x)的表达式;()当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值(精确到1辆/小时) 21已知命题p:不等式|x1|m1的解集为R,命题q:f(x)=(52m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围 22已知f(x)=(1+x)m+(1+2x)n(m,nN*)的展开式中x的系数为11(1)求x2的系数取最小值时n的值(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和23【2017-2018第一学期东台安丰中学高三第一次月考】已知函数,(1)求证:函数在点处的切线恒过定点,并求出定点的坐标;(2)若在区间上恒成立,求的取值范围;(3)当时,求证:在区间上,满足恒成立的函数有无穷多个(记)24(本小题满分10分)已知曲线的极坐标方程为,将曲线,(为参数),经过伸缩变换后得到曲线(1)求曲线的参数方程;(2)若点的在曲线上运动,试求出到曲线的距离的最小值民权县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:函数y=f(x)在1,3上单调递减,且函数f(x+3)是偶函数,f()=f(6),f(5)=f(1),f(6)f(2)f(1),f()f(2)f(5)故选:B【点评】本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档2 【答案】C【解析】解: a=ln2lne即,b=5=,c=xdx=,a,b,c的大小关系为:bca故选:C【点评】本题考查了不等式大小的比较,关键是求出它们的取值范围,是基础题3 【答案】A【解析】解:画出满足条件的平面区域,如图示:,由图象得P(3,0)到平面区域的最短距离dmin=,(x3)2+y2的最小值是:故选:A【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题4 【答案】C 【解析】解析:本题考查等比数列的通项公式与前项和公式,,,数列的前项和为,选C5 【答案】A【解析】试题分析:由已知得,则,所以考点:1、复合函数;2、导数的几何意义.6 【答案】C【解析】解:f(x)=log2x,f(2)=20,f(4)=0,满足f(2)f(4)0,f(x)在区间(2,4)内必有零点,故选:C7 【答案】D111【解析】试题分析:.考点:分段函数求值8 【答案】D【解析】解:Sn为等比数列an的前n项和,=4,S4,S8S4,S12S8也成等比数列,且S8=4S4,(S8S4)2=S4(S12S8),即9S42=S4(S124S4),解得=13故选:D【点评】熟练掌握等比数列的性质是解题的关键是基础的计算题9 【答案】B【解析】解法一:,(C为常数),取x=1得,再取x=0得,即得,故选B解法二:,故选B【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用10【答案】B【解析】【解析1】,所以【解析2】,11【答案】 B【解析】解:由题意,不等式f(x)g(x)在1,e上有解,mx2lnx,即在1,e上有解,令h(x)=,则h(x)=,1xe,h(x)0,h(x)max=h(e)=,h(e)=,mm的取值范围是(,)故选:B【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用12【答案】B【解析】连结交于点,取的中点,连结,则,所以底面,则到四棱锥的所有顶点的距离相等,即球心,均为,所以由球的体积可得,解得,故选B二、填空题13【答案】 【解析】解:函数f(x)=sinxcosx=sin(x),则=sin()=,故答案为:【点评】本题主要考查两角差的正弦公式,属于基础题14【答案】6 【解析】解:由约束条件,得可行域如图,使目标函数z=2x3y取得最小值的最优解为A(3,4),目标函数z=2x3y的最小值为z=2334=6故答案为:615【答案】(7i) 【解析】解:设z=a+bi(a,bR),(1+3i)z=(1+3i)(a+bi)=a3b+(3a+b)i为纯虚数,又=,|=,把a=3b代入化为b2=25,解得b=5,a=15=(7i)故答案为(7i)【点评】熟练掌握复数的运算法则、纯虚数的定义及其模的计算公式即可得出16【答案】3 【解析】解:把x=0代入2x+3y+6=0可得y=2,把y=0代入2x+3y+6=0可得x=3,直线与坐标轴的交点为(0,2)和(3,0),故三角形的面积S=23=3,故答案为:3【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题17【答案】54 【解析】解:如图,圆C1关于x轴的对称圆的圆心坐标A(2,3),半径为1,圆C2的圆心坐标(3,4),半径为3,|PM|+|PN|的最小值为圆A与圆C2的圆心距减去两个圆的半径和,即:4=54故答案为:54【点评】本题考查圆的对称圆的方程的求法,考查两个圆的位置关系,两点距离公式的应用,考查转化思想与计算能力,考查数形结合的数学思想,属于中档题18【答案】【解析】(2ab)a(2,2t)(1,1)21(2t)(1)4t2,t2.答案:2三、解答题19【答案】 【解析】解:()由|ax+1|3得4ax2不等式f(x)3的解集为x|2x1当a0时,不合题意;当a0时,a=2;()记,h(x)=|h(x)|1恒成立,k1【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题20【答案】 【解析】解:() 由题意:当0x20时,v(x)=60;当20x200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为()依题并由()可得当0x20时,f(x)为增函数,故当x=20时,其最大值为6020=1200当20x200时,当且仅当x=200x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200上取得最大值综上所述,当x=100时,f(x)在区间0,200上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:() 函数v(x)的表达式() 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时 21【答案】【解析】解:不等式|x1|m1的解集为R,须m10,即p是真 命题,m1f(x)=(52m)x是减函数,须52m1即q是真命题,m2,由于p或q为真命题,p且q为假命题,故p、q中一个真,另一个为假命题 因此,1m2【点评】本题考查在数轴上理解绝对值的几何意义,指数函数的单调性与特殊点,分类讨论思想,化简这两个命题是解题的关键属中档题22【答案】 【解析】【专题】计算题【分析】(1)利用二项展开式的通项公式求出展开式的x的系数,列出方程得到m,n的关系;利用二项展开式的通项公式求出x2的系数,将m,n的关系代入得到关于m的二次函数,配方求出最小值(2)通过对x分别赋值1,1,两式子相加求出展开式中x的奇次幂项的系数之和【解答】解:(1)由已知Cm1+2Cn1=11,m+2n=11,x2的系数为Cm2+22Cn2=+2n(n1)=+(11m)(1)=(m)2+mN*,m=5时,x2的系数取得最小值22,此时n=3(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,f(x)=(1+x)5+(1+2x)3设这时f(x)的展开式为f(x)=a0+a1x+a2x2+a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=1,a0a1+a2a3+a4a5=1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30【点评】本题考查利用二项展开式的通项公式求二项展开式的特殊项问题;利用赋值法求二项展开式的系数和问题23【答案】(1)切线恒过定点(2) 的范围是 (3) 在区间上,满足恒成立函数有无穷多个【解析】试题分析:(1)根据导数的几何意义求得切线方程为,故过定点;试题解析:(1)因为,所以在点处的切线的斜率为,所以在点处的切线方程为,整理得,所以切线恒过定点(2)令,对恒成立,因为令,得极值点,当时,有,即时,在上有,此时在区间上是增函数,并且在该区间上有,不合

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论