牙克石市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
牙克石市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
牙克石市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
牙克石市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
牙克石市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

牙克石市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20,灯塔B在观察站C的南偏东40,则灯塔A与灯塔B的距离为( )AakmB akmC2akmD akm2 设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)3 设函数f(x)的定义域为A,若存在非零实数l使得对于任意xI(IA),有x+lA,且f(x+l)f(x),则称f(x)为I上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2,且函数f(x)为R上的1高调函数,那么实数a的取值范围为( )A0a1BaC1a1D2a24 在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD5 设0a1,实数x,y满足,则y关于x的函数的图象形状大致是( )ABCD6 已知函数,关于的方程()有3个相异的实数根,则的取值范围是( )A B C D【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力7 已知集合,则( ) A B C D【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力8 过点(1,3)且平行于直线x2y+3=0的直线方程为( )Ax2y+7=0B2x+y1=0Cx2y5=0D2x+y5=09 下列函数中,为奇函数的是( )Ay=x+1By=x2Cy=2xDy=x|x|10若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件11在复平面内,复数所对应的点为,是虚数单位,则( )A B C D 12如图,空间四边形OABC中,点M在OA上,且,点N为BC中点,则等于( )ABCD二、填空题13在复平面内,记复数+i对应的向量为,若向量饶坐标原点逆时针旋转60得到向量所对应的复数为14已知平面向量,的夹角为,向量,的夹角为,则与的夹角为_,的最大值为 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.15函数f(x)=log(x22x3)的单调递增区间为16若数列an满足:存在正整数T,对于任意的正整数n,都有an+T=an成立,则称数列an为周期为T的周期数列已知数列an满足:a1=m (ma ),an+1=,现给出以下三个命题:若 m=,则a5=2;若 a3=3,则m可以取3个不同的值;若 m=,则数列an是周期为5的周期数列其中正确命题的序号是17已知i是虚数单位,复数的模为18设复数z满足z(23i)=6+4i(i为虚数单位),则z的模为三、解答题19(本小题满分12分)在多面体中,四边形与均为正方形,平面,平面,且(1)求证:平面平面;(2)求二面角的大小的余弦值 20 21已知ABC的顶点A(3,2),C的平分线CD所在直线方程为y1=0,AC边上的高BH所在直线方程为4x+2y9=0(1)求顶点C的坐标;(2)求ABC的面积22(本题满分15分)如图是圆的直径,是弧上一点,垂直圆所在平面,分别为,的中点.(1)求证:平面;(2)若,圆的半径为,求与平面所成角的正弦值.【命题意图】本题考查空间点、线、面位置关系,线面等基础知识,意在考查空间想象能力和运算求解能力23如图所示的几何体中,EA平面ABC,BD平面ABC,AC=BC=BD=2AE=,M是AB的中点(1)求证:CMEM;(2)求MC与平面EAC所成的角24已知函数f(x)=2x,且f(2)=(1)求实数a的值;(2)判断该函数的奇偶性;(3)判断函数f(x)在(1,+)上的单调性,并证明牙克石市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:根据题意,ABC中,ACB=1802040=120,AC=BC=akm,由余弦定理,得cos120=,解之得AB=akm,即灯塔A与灯塔B的距离为akm,故选:D【点评】本题给出实际应用问题,求海洋上灯塔A与灯塔B的距离着重考查了三角形内角和定理和运用余弦定理解三角形等知识,属于基础题2 【答案】C【解析】解: =f(x0),故选C【点评】本题考查了导数的几何意义,以及导数的极限表示形式,本题属于中档题3 【答案】 B【解析】解:定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2=图象如图,f(x)为R上的1高调函数,当x0时,函数的最大值为a2,要满足f(x+l)f(x),1大于等于区间长度3a2(a2),13a2(a2),a故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题4 【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题5 【答案】A【解析】解:0a1,实数x,y满足,即y=,故函数y为偶函数,它的图象关于y轴对称,在(0,+)上单调递增,且函数的图象经过点(0,1),故选:A【点评】本题主要指数式与对数式的互化,函数的奇偶性、单调性以及特殊点,属于中档题6 【答案】D第卷(共90分)7 【答案】D【解析】由已知得,故,故选D8 【答案】A【解析】解:由题意可设所求的直线方程为x2y+c=0过点(1,3)代入可得16+c=0 则c=7x2y+7=0故选A【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x2y+c=09 【答案】D【解析】解:由于y=x+1为非奇非偶函数,故排除A;由于y=x2为偶函数,故排除B;由于y=2x为非奇非偶函数,故排除C;由于y=x|x|是奇函数,满足条件,故选:D【点评】本题主要考查函数的奇偶性的判断,属于基础题10【答案】A【解析】解:由奇函数的定义可知:若f(x)为奇函数,则任意x都有f(x)=f(x),取x=0,可得f(0)=0;而仅由f(0)=0不能推得f(x)为奇函数,比如f(x)=x2,显然满足f(0)=0,但f(x)为偶函数由充要条件的定义可得:“函数f(x)是奇函数”是“f(0)=0”的充分不必要条件故选:A11【答案】D 【解析】解析:本题考查复数的点的表示与复数的乘法运算,选D12【答案】B【解析】解: =;又,故选B【点评】本题考查了向量加法的几何意义,是基础题二、填空题13【答案】2i 【解析】解:向量饶坐标原点逆时针旋转60得到向量所对应的复数为(+i)(cos60+isin60)=(+i)()=2i,故答案为 2i【点评】本题考查两个复数代数形式的乘法及其集合意义,判断旋转60得到向量对应的复数为(+i)(cos60+isin60),是解题的关键14【答案】,. 【解析】15【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)16【答案】 【解析】解:对于由an+1=,且a1=m=1,所以,1,a5=2 故正确;对于由a3=3,若a3=a21=3,则a2=4,若a11=4,则a1=5=m若,则若a11a1=,若0a11则a1=3,不合题意所以,a3=2时,m即a1的不同取值由3个故正确;若a1=m=1,则a2=,所a3=1,a4=故在a1=时,数列an是周期为3的周期数列,错;故答案为:【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目17【答案】 【解析】解:复数=i1的模为=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,属于基础题18【答案】2 【解析】解:复数z满足z(23i)=6+4i(i为虚数单位),z=,|z|=2,故答案为:2【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题三、解答题19【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想平面,平面平面5分20【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为5,15,(15,25,(25,35,(35,45,由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在5,15内的小球个数为X,求X的分布列和数学期望(以直方图中的频率作为概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差【专题】概率与统计【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20根据平均数值公式求解即可(2)XB(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,求解数学期望即可【解析】解:(1)由题意得,(0.02+0.032+a+0.018)10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值为:=0.210+0.3220+0.330+0.1840=24.6(克)故估计盒子中小球重量的平均值约为24.6克(2)利用样本估计总体,该盒子中小球的重量在5,15内的0.2;则XB(3,),X=0,1,2,3;P(X=0)=()3=;P(X=1)=()2=;P(X=2)=()()2=;P(X=3)=()3=,X的分布列为:X0123P即E(X)=0=【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力21【答案】 【解析】解:(1)由高BH所在直线方程为4x+2y9=0, =2直线ACBH,kACkBH=1,直线AC的方程为,联立点C的坐标C(1,1)(2),直线BC的方程为,联立,即点B到直线AC:x2y+1=0的距离为又,【点评】本题考查了相互垂直的直线斜率之间的关系、角平分线的性质、点到直线的距离公式、两点间的距离公式、三角形的面积计算公式,属于基础题22【答案】(1)详见解析;(2).【解析】(1),分别为,的中点,2分为圆的直径,4分又圆,6分,又,;7分(2)设点平面的距离为,由得,解得,12分 设与平面所成角为,则.15分23【答案】 【解析】(1)证明:AC=BC=AB,ABC为等腰直角三角形,M为AB的中点,AM=BM=CM,CMAB,EA平面ABC,EAAC,设AM=BM=CM=1,则有AC=,AE=AC=,在RtAEC中,根据勾股定理得:EC=,在RtAEM中,根据勾股定理得:EM=,EM2+MC2=EC2,CMEM;(2)解:过M作MNAC,可得MCA为MC与平面EAC所成的角,则MC与平面EAC所成的角为4524【答案】 【解析】解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论