




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高阳县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为( )2A B C D【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.2 已知双曲线的渐近线与圆x2+(y2)2=1相交,则该双曲线的离心率的取值范围是( )A(,+)B(1,)C(2+)D(1,2)3 若全集U=1,0,1,2,P=xZ|x22,则UP=( )A2B0,2C1,2D1,0,24 已知集合,则( ) A B C D【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力5 一个几何体的三视图如图所示,如果该几何体的侧面面积为12,则该几何体的体积是( )A4B12C16D486 图 1是由哪个平面图形旋转得到的( ) A B C D 7 已知函数f(x)=ax1+logax在区间1,2上的最大值和最小值之和为a,则实数a为( )ABC2D48 在二项式的展开式中,含x4的项的系数是( )A10B10C5D59 如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x的图象是( )ABCD10已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则=( )A1B2C5D311在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长概率为( )ABCD12数列1,4,7,10,13,的通项公式an为( )A2n1B3n+2C(1)n+1(3n2)D(1)n+13n2二、填空题13如果实数满足等式,那么的最大值是 14设全集U=0,1,2,3,4,集合A=0,1,2,集合B=2,3,则(UA)B=15的展开式中,常数项为_(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.16定义在上的函数满足:,则不等式(其中为自然对数的底数)的解集为 .17已知A(1,0),P,Q是单位圆上的两动点且满足,则+的最大值为18已知(1+x+x2)(x)n(nN+)的展开式中没有常数项,且2n8,则n=三、解答题19在三棱锥SABC中,SA平面ABC,ABAC()求证:ABSC;()设D,F分别是AC,SA的中点,点G是ABD的重心,求证:FG平面SBC;()若SA=AB=2,AC=4,求二面角AFDG的余弦值20(本小题满分12分)已知函数.(1)当时,求函数的值域;(2)已知,函数,若函数在区间上是增函数,求的最大值21如图,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成角为60()求证:AC平面BDE;()求二面角FBED的余弦值;()设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论22如图,椭圆C1:的离心率为,x轴被曲线C2:y=x2b截得的线段长等于椭圆C1的短轴长C2与y轴的交点为M,过点M的两条互相垂直的直线l1,l2分别交抛物线于A、B两点,交椭圆于D、E两点,()求C1、C2的方程;()记MAB,MDE的面积分别为S1、S2,若,求直线AB的方程23已知函数f(x)=|xa|()若不等式f(x)2的解集为0,4,求实数a的值;()在()的条件下,若x0R,使得f(x0)+f(x0+5)m24m,求实数m的取值范围24为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量(毫克)与时间(小时)成正比;药物释放完毕后,与的函数关系式为(为常数),如图所示据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量(毫克)与时间(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到毫克以下时,学生方可进教室。那么药物释放开始,至少需要经过多少小时后,学生才能回到教室? 高阳县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】2 【答案】C【解析】解:双曲线渐近线为bxay=0,与圆x2+(y2)2=1相交圆心到渐近线的距离小于半径,即13a2b2,c2=a2+b24a2,e=2故选:C【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等考查了学生数形结合的思想的运用3 【答案】A【解析】解:x22xP=xZ|x22=x|x,xZ|=1,0,1,又全集U=1,0,1,2,UP=2故选:A4 【答案】D【解析】由已知得,故,故选D5 【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,几何体的侧面积为22h=12,解得h=3,几何体的体积V=223=12故选B【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题6 【答案】A【解析】试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.考点:旋转体的概念.7 【答案】A【解析】解:分两类讨论,过程如下:当a1时,函数y=ax1 和y=logax在1,2上都是增函数,f(x)=ax1+logax在1,2上递增,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,舍去;当0a1时,函数y=ax1 和y=logax在1,2上都是减函数,f(x)=ax1+logax在1,2上递减,f(x)max+f(x)min=f(2)+f(1)=a+loga2+1=a,loga2=1,得a=,符合题意;故选A8 【答案】B【解析】解:对于,对于103r=4,r=2,则x4的项的系数是C52(1)2=10故选项为B【点评】二项展开式的通项是解决二项展开式的特定项问题的工具9 【答案】D【解析】解:幂函数y=x为增函数,且增加的速度比价缓慢,只有符合故选:D【点评】本题考查了幂函数的图象与性质,属于基础题10【答案】C【解析】解:由三次函数的图象可知,x=2函数的极大值,x=1是极小值,即2,1是f(x)=0的两个根,f(x)=ax3+bx2+cx+d,f(x)=3ax2+2bx+c,由f(x)=3ax2+2bx+c=0,得2+(1)=1,12=2,即c=6a,2b=3a,即f(x)=3ax2+2bx+c=3ax23ax6a=3a(x2)(x+1),则=5,故选:C【点评】本题主要考查函数的极值和导数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力11【答案】C【解析】解:如图所示,BCD是圆内接等边三角形,过直径BE上任一点作垂直于直径的弦,设大圆的半径为2,则等边三角形BCD的内切圆的半径为1,显然当弦为CD时就是BCD的边长,要使弦长大于CD的长,就必须使圆心O到弦的距离小于|OF|,记事件A=弦长超过圆内接等边三角形的边长=弦中点在内切圆内,由几何概型概率公式得P(A)=,即弦长超过圆内接等边三角形边长的概率是故选C【点评】本题考查了几何概型的运用;关键是找到事件A对应的集合,利用几何概型公式解答12【答案】C【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(1)n+1,绝对值为3n2,故通项公式an=(1)n+1(3n2)故选:C二、填空题13【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.14【答案】2,3,4 【解析】解:全集U=0,1,2,3,4,集合A=0,1,2,CUA=3,4,又B=2,3,(CUA)B=2,3,4,故答案为:2,3,415【答案】【解析】的展开式通项为,所以当时,常数项为.16【答案】【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得,结合要求的不等式可知在不等式两边同时乘以,即,因此构造函数,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令也可以求解.117【答案】 【解析】解:设=,则=,的方向任意+=1,因此最大值为故答案为:【点评】本题考查了数量积运算性质,考查了推理能力 与计算能力,属于中档题18【答案】5【解析】二项式定理【专题】计算题【分析】要想使已知展开式中没有常数项,需(x)n(nN+)的展开式中无常数项、x1项、x2项,利用(x)n(nN+)的通项公式讨论即可【解答】解:设(x)n(nN+)的展开式的通项为Tr+1,则Tr+1=xnrx3r=xn4r,2n8,当n=2时,若r=0,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;当n=3时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n3;当n=4时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(nN+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n6;当n=7时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n7;当n=8时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;综上所述,n=5时,满足题意故答案为:5【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题三、解答题19【答案】 【解析】()证明:SA平面ABC,AB平面ABC,SAAB,又ABAC,SAAC=A,AB平面SAC,又AS平面SAC,ABSC()证明:取BD中点H,AB中点M,连结AH,DM,GF,FM,D,F分别是AC,SA的中点,点G是ABD的重心,AH过点G,DM过点G,且AG=2GH,由三角形中位线定理得FDSC,FMSB,FMFD=F,平面FMD平面SBC,FG平面FMD,FG平面SBC()解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,SA=AB=2,AC=4,B(2,0,0),D(0,2,0),H(1,1,0),A(0,0,0),G(,0),F(0,0,1),=(0,2,1),=(),设平面FDG的法向量=(x,y,z),则,取y=1,得=(2,1,2),又平面AFD的法向量=(1,0,0),cos,=二面角AFDG的余弦值为【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用20【答案】(1);(2)【解析】试题分析:(1)化简,结合取值范围可得值域为;(2)易得和,由在上是增函数,的最大值为.考点:三角函数的图象与性质.21【答案】【解析】【分析】(I)由已知中DE平面ABCD,ABCD是边长为3的正方形,我们可得DEAC,ACBD,结合线面垂直的判定定理可得AC平面BDE;()以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF和平面BDE的法向量,代入向量夹角公式,即可求出二面角FBED的余弦值;()由已知中M是线段BD上一个动点,设M(t,t,0)根据AM平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置【解答】证明:()因为DE平面ABCD,所以DEAC因为ABCD是正方形,所以ACBD,从而AC平面BDE(4分)解:()因为DA,DC,DE两两垂直,所以建立空间直角坐标系Dxyz如图所示因为BE与平面ABCD所成角为600,即DBE=60,所以由AD=3,可知,则A(3,0,0),B(3,3,0),C(0,3,0),所以,设平面BEF的法向量为=(x,y,z),则,即令,则=因为AC平面BDE,所以为平面BDE的法向量,所以cos因为二面角为锐角,所以二面角FBED的余弦值为(8分)()点M是线段BD上一个动点,设M(t,t,0)则因为AM平面BEF,所以=0,即4(t3)+2t=0,解得t=2此时,点M坐标为(2,2,0),即当时,AM平面BEF(12分)22【答案】 【解析】解:()椭圆C1:的离心率为,a2=2b2,令x2b=0可得x=,x轴被曲线C2:y=x2b截得的线段长等于椭圆C1的短轴长,2=2b,b=1,C1、C2的方程分别为,y=x21; ()设直线MA的斜率为k1,直线MA的方程为y=k1x1与y=x21联立得x2k1x=0x=0或x=k1,A(k1,k121)同理可得B(k2,k221)S1=|MA|MB|=|k1|k2|y=k1x1与椭圆方程联立,可得D(),同理可得E() S2=|MD|ME|= 若则解得或
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年人力资源管理师考试重点及模拟题集
- 五数打电话教学课件
- 2025年酒店管理中级职称考试预测题及备考攻略版
- 2025年特岗教师招聘备考策略初中语文专业知识重点复习方向解析
- 电剪安全知识培训总结课件
- 电冰箱的清洗与维护
- 2025年求职面试全攻略手册各行业模拟题集与答案详解
- 2025年电子商务运营实操模拟题及解析
- 产教融合教学课件模板
- 2025年特岗教师招聘考试初中语文考试题型分析
- 2025年水利工程监理员网络培训考试试题与答案
- 保险车险知识培训总结课件
- 施工合同 补充协议
- GB/T 23781-2024黑芝麻糊质量通则
- 110kV企业变电站短路电流计算及继电保护整定计算
- 口咽通气道的使用方法
- 2022年晋能控股煤业集团有限公司招聘笔试题库及答案解析
- 福建师范大学各学生组织部门简介
- CAMDS操作方法及使用技巧
- (新版)铁路防洪知识题库(含答案)
- 飞行区基础知识
评论
0/150
提交评论