




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
平川区高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 等比数列an满足a1=3,a1+a3+a5=21,则a2a6=( )A6B9C36D722 已知集合,则A0或B0或3C1或D1或33 若等式(2x1)2014=a0+a1x+a2x2+a2014x2014对于一切实数x都成立,则a0+1+a2+a2014=( )ABCD04 已知x,yR,且,则存在R,使得xcos+ysin+1=0成立的P(x,y)构成的区域面积为( )A4B4CD +5 若直线y=kxk交抛物线y2=4x于A,B两点,且线段AB中点到y轴的距离为3,则|AB|=( )A12B10C8D66 如图框内的输出结果是( )A2401B2500C2601D27047 已知函数f(x)=,则的值为( )ABC2D38 与椭圆有公共焦点,且离心率的双曲线方程为( )ABCD9 (文科)要得到的图象,只需将函数的图象( )A向左平移1个单位 B向右平移1个单位 C向上平移1个单位 D向下平移1个单位10已知函数,函数,其中bR,若函数y=f(x)g(x)恰有4个零点,则b的取值范围是( )ABCD11设全集U=MN=1,2,3,4,5,MUN=2,4,则N=( )A1,2,3B1,3,5C1,4,5D2,3,412设xR,则x2的一个必要不充分条件是( )Ax1Bx1Cx3Dx3 二、填空题13曲线在点(3,3)处的切线与轴x的交点的坐标为14若函数在区间上单调递增,则实数的取值范围是_.15用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.16当时,函数的图象不在函数的下方,则实数的取值范围是_【命题意图】本题考查函数图象间的关系、利用导数研究函数的单调性,意在考查等价转化能力、逻辑思维能力、运算求解能力17长方体ABCDA1B1C1D1的棱AB=AD=4cm,AA1=2cm,则点A1到平面AB1D1的距离等于cm18若命题“xR,|x2|kx+1”为真,则k的取值范围是三、解答题19已知函数f(x)=ax22lnx()若f(x)在x=e处取得极值,求a的值;()若x(0,e,求f(x)的单调区间;() 设a,g(x)=5+ln,x1,x2(0,e,使得|f(x1)g(x2)|9成立,求a的取值范围 20(本小题满分10分)已知函数(1)若求不等式的解集;(2)若的解集包含,求实数的取值范围21如图,在三棱柱ABCA1B1C1中,底面ABC是边长为2的等边三角形,D为AB中点(1)求证:BC1平面A1CD;(2)若四边形BCC1B1是正方形,且A1D=,求直线A1D与平面CBB1C1所成角的正弦值22已知f(x)=log3(1+x)log3(1x)(1)判断函数f(x)的奇偶性,并加以证明;(2)已知函数g(x)=log,当x,时,不等式 f(x)g(x)有解,求k的取值范围23如图,椭圆C: +=1(ab0)的离心率e=,且椭圆C的短轴长为2()求椭圆C的方程;()设P,M,N椭圆C上的三个动点(i)若直线MN过点D(0,),且P点是椭圆C的上顶点,求PMN面积的最大值;(ii)试探究:是否存在PMN是以O为中心的等边三角形,若存在,请给出证明;若不存在,请说明理由24设a0,是R上的偶函数()求a的值;()证明:f(x)在(0,+)上是增函数平川区高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:设等比数列an的公比为q,a1=3,a1+a3+a5=21,3(1+q2+q4)=21,解得q2=2则a2a6=9q6=72故选:D2 【答案】B【解析】,故或,解得或或,又根据集合元素的互异性,所以或。3 【答案】B【解析】解法一:,(C为常数),取x=1得,再取x=0得,即得,故选B解法二:,故选B【点评】本题考查二项式定理的应用,定积分的求法,考查转化思想的应用4 【答案】 A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在R,使得xcos+ysin+1=0成立,则(cos+sin)=1,令sin=,则cos=,则方程等价为sin(+)=1,即sin(+)=,存在R,使得xcos+ysin+1=0成立,|1,即x2+y21,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=4,直线y=x的倾斜角为,则AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键综合性较强5 【答案】C【解析】解:直线y=kxk恒过(1,0),恰好是抛物线y2=4x的焦点坐标,设A(x1,y1) B(x2,y2) 抛物y2=4x的线准线x=1,线段AB中点到y轴的距离为3,x1+x2=6,|AB|=|AF|+|BF|=x1+x2+2=8,故选:C【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离6 【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+99=2500,故选:B【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题7 【答案】A【解析】解:函数f(x)=,f()=2,=f(2)=32=故选:A8 【答案】 A【解析】解:由于椭圆的标准方程为:则c2=132122=25则c=5又双曲线的离心率a=4,b=3又因为且椭圆的焦点在x轴上,双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m0,n0,mn),双曲线方程可设为mx2ny2=1(m0,n0,mn),由题目所给条件求出m,n即可9 【答案】C【解析】试题分析:,故向上平移个单位.考点:图象平移 10【答案】 D【解析】解:g(x)=f(2x),y=f(x)g(x)=f(x)+f(2x),由f(x)+f(2x)=0,得f(x)+f(2x)=,设h(x)=f(x)+f(2x),若x0,则x0,2x2,则h(x)=f(x)+f(2x)=2+x+x2,若0x2,则2x0,02x2,则h(x)=f(x)+f(2x)=2x+2|2x|=2x+22+x=2,若x2,x2,2x0,则h(x)=f(x)+f(2x)=(x2)2+2|2x|=x25x+8作出函数h(x)的图象如图:当x0时,h(x)=2+x+x2=(x+)2+,当x2时,h(x)=x25x+8=(x)2+,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)g(x)恰有4个零点,即h(x)=恰有4个根,则满足2,解得:b(,4),故选:D【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键11【答案】B【解析】解:全集U=MN=1,2,3,4,5,MCuN=2,4,集合M,N对应的韦恩图为所以N=1,3,5故选B12【答案】A【解析】解:当x2时,x1成立,即x1是x2的必要不充分条件是,x1是x2的既不充分也不必要条件,x3是x2的充分条件,x3是x2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础二、填空题13【答案】(,0) 【解析】解:y=,斜率k=y|x=3=2,切线方程是:y3=2(x3),整理得:y=2x+9,令y=0,解得:x=,故答案为:【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题14【答案】【解析】试题分析:因为在区间上单调递增,所以时,恒成立,即恒成立,可得,故答案为.1考点:1、利用导数研究函数的单调性;2、不等式恒成立问题.15【答案】48【解析】16【答案】【解析】由题意,知当时,不等式,即恒成立令,令,在为递减,在为递增,则17【答案】 【解析】解:由题意可得三棱锥B1AA1D1的体积是=,三角形AB1D1的面积为4,设点A1到平面AB1D1的距离等于h,则,则h=故点A1到平面AB1D1的距离为故答案为:18【答案】1,) 【解析】解:作出y=|x2|,y=kx+1的图象,如图所示,直线y=kx+1恒过定点(0,1),结合图象可知k1,)故答案为:1,)【点评】本题考查全称命题,考查数形结合的数学思想,比较基础三、解答题19【答案】 【解析】解:() f(x)=2ax= 由已知f(e)=2ae=0,解得a=经检验,a=符合题意 () 1)当a0时,f(x)0,f(x)在(0,e上是减函数2)当a0时,若e,即,则f(x)在(0,)上是减函数,在(,e上是增函数;若e,即0a,则f(x)在0,e上是减函数综上所述,当a时,f(x)的减区间是(0,e,当a时,f(x)的减区间是,增区间是()当时,由()知f(x)的最小值是f()=1+lna;易知g(x)在(0,e上的最大值是g(e)=4lna;注意到(1+lna)(4lna)=5+2lna0,故由题设知,解得ae2故a的取值范围是(,e2) 20【答案】(1);(2).【解析】试题分析:(1)当时,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为;(2)等价于,即在上恒成立,即.试题解析:(1)当时,即或或,解得或,不等式的解集为;考点:不等式选讲21【答案】 【解析】证明:(1)连AC1,设AC1与A1C相交于点O,连DO,则O为AC1中点,D为AB的中点,DOBC1,BC1平面A1CD,DO平面A1CD,BC1平面A1CD 解:底面ABC是边长为2等边三角形,D为AB的中点,四边形BCC1B1是正方形,且A1D=,CDAB,CD=,AD=1,AD2+AA12=A1D2,AA1AB,CDDA1,又DA1AB=D,CD平面ABB1A1,BB1平面ABB1A1,BB1CD,矩形BCC1B1,BB1BC,BCCD=CBB1平面ABC,底面ABC是等边三角形,三棱柱ABCA1B1C1是正三棱柱以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,B(2,0,0),A(1,0,),D(,0,),A1(1,2,),=(,2,),平面CBB1C1的法向量=(0,0,1),设直线A1D与平面CBB1C1所成角为,则sin=直线A1D与平面CBB1C1所成角的正弦值为22【答案】 【解析】解:(1)f(x)=log3(1+x)log3(1x)为奇函数理由:1+x0且1x0,得定义域为(1,1),(2分)又f(x)=log3(1x)log3(1+x)=f(x),则f(x)是奇函数.(2)g(x)=log=2log3,(5分)又1x1,k0,(6分)由f(x)g(x)得log3log3,即,(8分)即k21x2,(9分)x,时,1x2最小值为,(10分)则k2,(11分)又k0,则k,即k的取值范围是(,.【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题23【答案】 【解析】解:()由题意得解得a=2,b=1,所以椭圆方程为()(i)由已知,直线MN的斜率存在,设直线MN方程为y=kx,M(x1,y1),N(x2,y2)由得(1+4k2)x24kx3=0,x1+x2=,x1x2=,又 所以SPMN=|PD|x1x2|= 令t=,则t,k2=所以SPMN=,令h(t)=,t,+),则h(t)=1=0,所以h(t)在,+),单调递增,则t=,即k=0时,h(t)的最小值,为h()=,所以PMN面积的最大值为 (ii)假设存在PMN是以O为中心的等边三角形(1)当P在y轴上时,P的坐标为(0,1),则M,N关于y轴对称,MN的中点Q在y轴上又O为PMN的中心,所以,可知Q(0,),M(,),N(,)从而|MN|=,|PM|=,|MN|PM|,与PMN为等边三角形矛盾(2)当P在x轴上时,同理可知,|MN|PM|,与PMN为等边三角形矛盾 (3)当P不在坐标轴时,设P(x0,y0),MN的中点为Q,则kOP=,又O为PMN的中心,则,可知设M(x1,y1),N(x2,y2),则x1+x2=2xQ=x0,y1+y2=2yQ=y0,又x12+4y12=4,x22+4y22=4,两式相减得kMN=,从而kMN= 所以kOPkMN=()=1,所以OP与MN不垂直,与等边PMN矛盾 综上所述,不存在PMN是以O为中心的等边三角形【点评】本小题考查点到直线的距离公式、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电缆桥架安装和桥架内电缆敷设安全技术交底
- 五模超材料结构的跨尺度拓扑优化方法研究
- 2025建筑工程合同诚信合作
- 黑龙江省齐齐哈尔市2024-2025学年高二下册7月期末考试数学试卷(附答案)
- 新人教版历史7年级上册全册教学课件
- 2024年上海青浦区社区工作者司法社工招聘真题
- 神经内科神经肌肉疾病基础知识点归纳
- 轮岗工作汇报交流群
- 历史建筑群社区活动规划基础知识点归纳
- 湘西州保靖县事业单位招聘笔试真题2024
- 电梯施工方案对重反绳轮
- 基于电磁感应原理的旋转设备转速精确测量技术研究
- 辐射工作人员培训、体检及保健制度
- 女装基础知识
- 商场安全隐患排查培训
- 预防性侵家长会
- 建筑施工安全风险管理制度
- 水电站安全知识
- 龙舟竞渡 y-2024-2025学年人美版(2024)初中美术七年级下册
- 人教版小学五年级语文下册2024-2025学年度第二学期第七单元质量检测试卷含参考答案
- 接触性皮炎的预防护理
评论
0/150
提交评论