




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
太仓市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数f(x)=3x+x的零点所在的一个区间是( )A(3,2)B(2,1)C(1,0)D(0,1)2 已知集合A=4,5,6,8,B=3,5,7,8,则集合AB=( )A5,8B4,5,6,7,8C3,4,5,6,7,8D4,5,6,7,83 已知f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,则f(x)g(x)0的解集为( )A(,a2)(a2,)B(,a2)(a2,)C(,a2)(a2,b)D(b,a2)(a2,)4 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()A B C D5 已知集合A=y|y=x2+2x3,则有( )AABBBACA=BDAB=6 点A是椭圆上一点,F1、F2分别是椭圆的左、右焦点,I是AF1F2的内心若,则该椭圆的离心率为( )ABCD7 利用斜二测画法得到的:三角形的直观图是三角形;平行四边形的直观图是平行四边形;正方形的直观图是正方形;菱形的直观图是菱形以上结论正确的是( )A B C D8 设D、E、F分别是ABC的三边BC、CA、AB上的点,且=2, =2, =2,则与( )A互相垂直B同向平行C反向平行D既不平行也不垂直9 已知圆过定点且圆心在抛物线上运动,若轴截圆所得的弦为,则弦长等于( )A2 B3 C4 D与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.10函数f(x)=tan(2x+),则( )A函数最小正周期为,且在(,)是增函数B函数最小正周期为,且在(,)是减函数C函数最小正周期为,且在(,)是减函数D函数最小正周期为,且在(,)是增函数11已知等差数列an中,a6+a8=16,a4=1,则a10的值是( )A15B30C31D6412如图所示,阴影部分表示的集合是( )A(UB)AB(UA)BCU(AB)DU(AB)二、填空题13平面向量,满足|2|=1,|2|=1,则的取值范围14在数列中,则实数a=,b=15已知数列an中,a1=1,an+1=an+2n,则数列的通项an=16平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题: m,使曲线E过坐标原点; 对m,曲线E与x轴有三个交点; 曲线E只关于y轴对称,但不关于x轴对称; 若P、M、N三点不共线,则 PMN周长的最小值为24; 曲线E上与M,N不共线的任意一点G关于原点对称的另外一点为H,则四边形GMHN 的面积不大于m。 其中真命题的序号是(填上所有真命题的序号)17直线ax2y+2=0与直线x+(a3)y+1=0平行,则实数a的值为 18在中,角的对边分别为,若,的面积,则边的最小值为_【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力三、解答题19(本小题满分12分)设,满足(1)求的值;(2)求的值20(本小题满分12分)如图,四棱锥中,底面为矩形,平面,是的中点.(1)证明:平面;(2)设,三棱锥的体积,求到平面的距离.11121在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y1)2=4和圆C2:(x4)2+(y5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标22已知函数f(x0=(1)画出y=f(x)的图象,并指出函数的单调递增区间和递减区间; (2)解不等式f(x1)23某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行试销,得到如下数据:单价x(单位:元)88.28.48.68.89销量y(单位:万件)908483807568(1)现有三条y对x的回归直线方程: =10x+170; =20x+250; =15x+210;根据所学的统计学知识,选择一条合理的回归直线,并说明理由(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件5元,为使公司获得最大利润,该产品的单价应定多少元?(利润=销售收入成本)24某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励记奖金为y(单位:万元),销售利润为x(单位:万元)(1)写出奖金y关于销售利润x的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?太仓市实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(1)=10,f(0)=30+0=10,f(1)f(0)0,可知:函数f(x)的零点所在的区间是(1,0)故选:C【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题2 【答案】C【解析】解:A=4,5,6,8,B=3,5,7,8,AB=3,4,5,6,7,8故选C3 【答案】A【解析】解:f(x),g(x)都是R上的奇函数,f(x)0的解集为(a2,b),g(x)0的解集为(,),且a2,f(x)0的解集为(b,a2),g(x)0的解集为(,),则不等式f(x)g(x)0等价为或,即a2x或xa2,故不等式的解集为(,a2)(a2,),故选:A【点评】本题主要考查不等式的求解,根据函数奇偶性的对称性的性质求出f(x)0和g(x)0的解集是解决本题的关键4 【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2故答案为:C5 【答案】B【解析】解:y=x2+2x3=(x+1)24,y4则A=y|y4x0,x+2=2(当x=,即x=1时取“=”),B=y|y2,BA故选:B【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项6 【答案】B【解析】解:设AF1F2的内切圆半径为r,则SIAF1=|AF1|r,SIAF2=|AF2|r,SIF1F2=|F1F2|r,|AF1|r=2|F1F2|r|AF2|r,整理,得|AF1|+|AF2|=2|F1F2|a=2,椭圆的离心率e=故选:B7 【答案】A【解析】考点:斜二测画法8 【答案】D【解析】解:如图所示,ABC中, =2, =2, =2,根据定比分点的向量式,得=+,=+, =+,以上三式相加,得+=,所以,与反向共线【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目9 【答案】A【解析】过作垂直于轴于,设,则,在中,为圆的半径,为的一半,因此又点在抛物线上,.10【答案】D【解析】解:对于函数f(x)=tan(2x+),它的最小正周期为,在(,)上,2x+(,),函数f(x)=tan(2x+)单调递增,故选:D11【答案】A【解析】解:等差数列an,a6+a8=a4+a10,即16=1+a10,a10=15,故选:A12【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,对应的集合表示为AUB故选:A二、填空题13【答案】,1 【解析】解:设两个向量的夹角为,因为|2|=1,|2|=1,所以,所以, =所以5=1,所以,所以5a21, ,1,所以;故答案为:,1【点评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围14【答案】a=,b= 【解析】解:由5,10,17,ab,37知,ab=26,由3,8,a+b,24,35知,a+b=15,解得,a=,b=;故答案为:,【点评】本题考查了数列的性质的判断与归纳法的应用15【答案】2n1 【解析】解:a1=1,an+1=an+2n,a2a1=2,a3a2=22,anan1=2n1,相加得:ana1=2+22+23+2+2n1,an=2n1,故答案为:2n1,16【答案】 解析:平面内两定点M(0,2)和N(0,2),动点P(x,y)满足|=m(m4),=m(0,0)代入,可得m=4,正确;令y=0,可得x2+4=m,对于任意m,曲线E与x轴有三个交点,不正确;曲线E关于x轴对称,但不关于y轴对称,故不正确;若P、M、N三点不共线,|+|2=2,所以PMN周长的最小值为2+4,正确;曲线E上与M、N不共线的任意一点G关于原点对称的点为H,则四边形GMHN的面积为2SMNG=|GM|GN|sinMGNm,四边形GMHN的面积最大为不大于m,正确故答案为:17【答案】1【解析】【分析】利用两直线平行的条件,一次项系数之比相等,但不等于常数项之比,求得实数a的值【解答】解:直线ax2y+2=0与直线x+(a3)y+1=0平行,解得 a=1故答案为 118【答案】三、解答题19【答案】(1);(2)【解析】试题分析:(1)由 ,又;(2)由(1)可得试题解析:(1),3分,6分(2)由(1)可得8分,10分12分考点:三角恒等变换20【答案】(1)证明见解析;(2).【解析】试题解析:(1)设和交于点,连接,因为为矩形,所以为的中点,又为的中点,所以,且平面,平面,所以平面.(2),由,可得,作交于.由题设知平面,所以,故平面,又,所以到平面的距离为.1考点:1、棱锥的体积公式;2、直线与平面平行的判定定理.21【答案】【解析】【分析】(1)因为直线l过点A(4,0),故可以设出直线l的点斜式方程,又由直线被圆C1截得的弦长为2,根据半弦长、半径、弦心距满足勾股定理,我们可以求出弦心距,即圆心到直线的距离,得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l的方程(2)与(1)相同,我们可以设出过P点的直线l1与l2的点斜式方程,由于两直线斜率为1,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,故我们可以得到一个关于直线斜率k的方程,解方程求出k值,代入即得直线l1与l2的方程【解答】解:(1)由于直线x=4与圆C1不相交;直线l的斜率存在,设l方程为:y=k(x4)(1分)圆C1的圆心到直线l的距离为d,l被C1截得的弦长为2d=1(2分)d=从而k(24k+7)=0即k=0或k=直线l的方程为:y=0或7x+24y28=0(5分)(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为yb=k(xa),k0则直线l2方程为:yb=(xa)(6分)C1和C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=(8分)整理得|1+3k+akb|=|5k+4abk|1+3k+akb=(5k+4abk)即(a+b2)k=ba+3或(ab+8)k=a+b5因k的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P1(,)或点P2(,)(12分)22【答案】 【解析】解:(1)图象如图所示:由图象可知函数的单调递增区间为(,0),(1,+),丹迪减区间是(0,1)(2)由已知可得或,解得x1或x,故不等式的解集为(,1,【点评】本题考查了分段函数的图象的画法和不等式的解集的求法,属于基础题23【答案】 【解析】(1)=(8+8.2+8.4+8.6+8.8+9)=8.5, =(90+84+83+80+75+68)=80;(,)在回归直线上,选择=20x+250;(2)利润w=(x5)(20x+250)=20x2+350x1250=20(x8.75)2+281.25,当x=8.75元时,利润W最大为281.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年淮北市法院系统招聘真题
- 2025年陆丰市属事业单位考试试卷
- 2025年潍坊职业学院高层次高技能人才引进(招聘)(10人)考前自测高频考点模拟试题及完整答案详解
- 2025年西北(西安)电能成套设备有限公司招聘(4人)模拟试卷及完整答案详解1套
- 2025江苏泰州市姜堰中医院招聘卫生专业技术人员30人考前自测高频考点模拟试题及答案详解(有一套)
- 2025内蒙古工业大学事业编制人员招聘20人考前自测高频考点模拟试题及完整答案详解
- 2025福建福州大学先进制造学院(晋江市福大科教园区发展中心)招聘高层次人才13人模拟试卷完整答案详解
- 2025年潍坊市寒亭区人民检察院公开招聘工作人员模拟试卷及答案详解(历年真题)
- 2025江苏南通市通州区机关车辆管理中心驾驶员招聘2人模拟试卷及答案详解(考点梳理)
- 2025广西广西民族大学招聘1人(国际合作与交流处外事科工作人员)模拟试卷(含答案详解)
- 2025小学道德与法治开学第一课(思想政治理论教育课)
- 公关经理培训课程
- 异博定治疗方案
- 申请法院司法赔偿申请书
- 锻造操作机安全检查表模版
- 400字作文稿纸可修改模板
- 迪尔凯姆社会学主义的巨擎汇总课件
- 防排烟系统施工安装全程验收记录
- 家庭经济困难学生认定申请表
- 阀门安装及阀门安装施工方案
- YY 9706.240-2021医用电气设备第2-40部分:肌电及诱发反应设备的基本安全和基本性能专用要求
评论
0/150
提交评论