尼玛县外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第1页
尼玛县外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第2页
尼玛县外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第3页
尼玛县外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第4页
尼玛县外国语学校2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷尼玛县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 已知|=3,|=1,与的夹角为,那么|4|等于( )A2BCD132 已知函数f(x)=是R上的增函数,则a的取值范围是( )A3a0B3a2Ca2Da03 复数i1(i是虚数单位)的虚部是( )A1B1CiDi4 函数y=2|x|的图象是( )ABCD5 数列1,的前100项的和等于( )ABCD6 长方体ABCDA1B1C1D1中,AA1=2AB=2AD,G为CC1中点,则直线A1C1与BG所成角的大小是( )A30B45C60D1207 四面体 中,截面 是正方形, 则在下列结论中,下列说法错误的是( ) A B C. D异面直线与所成的角为8 过点P(2,2)作直线l,使直线l与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l一共有( )A3条B2条C1条D0条9 在等差数列中,首项公差,若,则 A、B、 C、D、10函数f(x)=x22ax,x1,+)是增函数,则实数a的取值范围是( )ARB1,+)C(,1D2,+)11三个数a=0.52,b=log20.5,c=20.5之间的大小关系是( )AbacBacbCabcDbca12若函数的定义域是,则函数的定义域是( )A B C D二、填空题13在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB的距离是14设双曲线=1,F1,F2是其两个焦点,点M在双曲线上若F1MF2=90,则F1MF2的面积是15设f(x)是定义在R上的周期为2的函数,当x1,1)时,f(x)=,则f()=16函数y=f(x)的图象在点M(1,f(1)处的切线方程是y=3x2,则f(1)+f(1)=17由曲线y=2x2,直线y=4x2,直线x=1围成的封闭图形的面积为18在空间直角坐标系中,设,且,则 .三、解答题19在ABC中,cos2A3cos(B+C)1=0(1)求角A的大小;(2)若ABC的外接圆半径为1,试求该三角形面积的最大值20已知奇函数f(x)=(cR)()求c的值;()当x2,+)时,求f(x)的最小值21双曲线C:x2y2=2右支上的弦AB过右焦点F(1)求弦AB的中点M的轨迹方程(2)是否存在以AB为直径的圆过原点O?若存在,求出直线AB的斜率K的值若不存在,则说明理由22武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者现从符合条件的志愿者中随机抽取100名按年龄分组:第1组20,25),第2组25,30),第3组30,35),第4组35,40),第5组40,45,得到的频率分布直方图如图所示(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率23(本小题满分12分)在ABC中,A,B,C所对的边分别是a、b、c,不等式x2cos C4xsin C60对一切实数x恒成立.(1)求cos C的取值范围;(2)当C取最大值,且ABC的周长为6时,求ABC面积的最大值,并指出面积取最大值时ABC的形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.24已知集合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0(1)求AB(2)若AC=C,求实数m的取值范围尼玛县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】解:|=3,|=1,与的夹角为,可得=|cos,=31=,即有|4|=故选:C【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题2 【答案】B【解析】解:函数是R上的增函数设g(x)=x2ax5(x1),h(x)=(x1)由分段函数的性质可知,函数g(x)=x2ax5在(,1单调递增,函数h(x)=在(1,+)单调递增,且g(1)h(1)解可得,3a2故选B3 【答案】A【解析】解:由复数虚部的定义知,i1的虚部是1,故选A【点评】该题考查复数的基本概念,属基础题4 【答案】B【解析】解:f(x)=2|x|=2|x|=f(x)y=2|x|是偶函数,又函数y=2|x|在0,+)上单调递增,故C错误且当x=0时,y=1;x=1时,y=2,故A,D错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键5 【答案】A【解析】解:=1故选A6 【答案】C【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AA1=2AB=2AD=2,A1(1,0,2),C1(0,1,2),=(1,1,0),B(1,1,0),G(0,1,1),=(1,0,1),设直线A1C1与BG所成角为,cos=,=60故选:C【点评】本题考查空间点、线、面的位置关系及学生的空间想象能力、求异面直线角的能力,解题时要注意向量法的合理运用7 【答案】B【解析】试题分析:因为截面是正方形,所以,则平面平面,所以,由可得,所以A正确;由于可得截面,所以C正确;因为,所以,由,所以是异面直线与所成的角,且为,所以D正确;由上面可知,所以,而,所以,所以B是错误的,故选B. 1考点:空间直线与平面的位置关系的判定与证明.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与平面平行的判定定理和性质定理、正方形的性质、异面直线所成的角等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,此类问题的解答中熟记点、线、面的位置关系的判定定理和性质定理是解答的关键.8 【答案】C【解析】解:假设存在过点P(2,2)的直线l,使它与两坐标轴围成的三角形的面积为8,设直线l的方程为:,则即2a2b=ab直线l与两坐标轴在第二象限内围成的三角形面积S=ab=8,即ab=16,联立,解得:a=4,b=4直线l的方程为:,即xy+4=0,即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题9 【答案】A【解析】, 10【答案】C【解析】解:由于f(x)=x22ax的对称轴是直线x=a,图象开口向上,故函数在区间(,a为减函数,在区间a,+)上为增函数,又由函数f(x)=x22ax,x1,+)是增函数,则a1故答案为:C11【答案】A【解析】解:a=0.52=0.25,b=log20.5log21=0,c=20.520=1,bac故选:A【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用12【答案】B 【解析】二、填空题13【答案】 【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(,),故AB的斜率为,故直线AB的方程为 y=(x3),即x+3y12=0,所以O点到直线AB的距离是=,故答案为:【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题14【答案】9 【解析】解:双曲线=1的a=2,b=3,可得c2=a2+b2=13,又|MF1|MF2|=2a=4,|F1F2|=2c=2,F1MF2=90,在F1AF2中,由勾股定理得:|F1F2|2=|MF1|2+|MF2|2=(|MF1|MF2|)2+2|MF1|MF2|,即4c2=4a2+2|MF1|MF2|,可得|MF1|MF2|=2b2=18,即有F1MF2的面积S=|MF1|MF2|sinF1MF2=181=9故答案为:9【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与a、b、c之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算能力,属于中档题15【答案】1 【解析】解:f(x)是定义在R上的周期为2的函数,=1故答案为:1【点评】本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”16【答案】4 【解析】解:由题意得f(1)=3,且f(1)=312=1所以f(1)+f(1)=3+1=4故答案为4【点评】本题主要考查导数的几何意义,要注意分清f(a)与f(a)17【答案】 【解析】解:由方程组 解得,x=1,y=2故A(1,2)如图,故所求图形的面积为S=11(2x2)dx11(4x2)dx=(4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题18【答案】1【解析】试题分析:,解得:,故填:1.考点:空间向量的坐标运算三、解答题19【答案】 【解析】(本题满分为12分)解:(1)cos2A3cos(B+C)1=02cos2A+3cosA2=0,2分解得:cosA=,或2(舍去),4分又0A,A=6分(2)a=2RsinA=,又a2=b2+c22bccosA=b2+c2bcbc,bc3,当且仅当b=c时取等号,SABC=bcsinA=bc,三角形面积的最大值为 20【答案】 【解析】解:()f(x)是奇函数,f(x)=f(x),=,比较系数得:c=c,c=0,f(x)=x+;()f(x)=x+,f(x)=1,当x2,+)时,10,函数f(x)在2,+)上单调递增,f(x)min=f(2)=【点评】本题考查了函数的奇偶性问题,考查了函数的单调性、最值问题,是一道中档题21【答案】 【解析】解:(1)设M(x,y),A(x1,y1)、B(x2,y2),则x12y12=2,x22y22=2,两式相减可得(x1+x2)(x1x2)(y1+y2)(y1y2)=0,2x(x1x2)2y(y1y2)=0,=,双曲线C:x2y2=2右支上的弦AB过右焦点F(2,0),化简可得x22xy2=0,(x2) (2)假设存在,设A(x1,y1),B(x2,y2),lAB:y=k(x2)由已知OAOB得:x1x2+y1y2=0,所以(k21)联立得:k2+1=0无解所以这样的圆不存在22【答案】 【解析】解:(1)由题意可知第3组的频率为0.065=0.3,第4组的频率为0.045=0.2,第5组的频率为0.025=0.1;(2)第3组的人数为0.3100=30,第4组的人数为0.2100=20,第5组的人数为0.1100=10;因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组=3;第4组=2;第5组=1;应从第3,4,5组各抽取3,2,1名志愿者(3)记第3组3名志愿者为1,2,3;第4组2名志愿者为4,5;第5组1名志愿者为6;在这6名志愿者中随机抽取2名志愿者有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论