已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
阿成区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知f(x)为偶函数,且f(x+2)=f(x),当2x0时,f(x)=2x;若nN*,an=f(n),则a2017等于( )A2017B8CD2 已知双曲线(a0,b0)的右焦点F,直线x=与其渐近线交于A,B两点,且ABF为钝角三角形,则双曲线离心率的取值范围是( )ABCD3 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A35BCD534 如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点给出下列命题不存在点D,使四面体ABCD有三个面是直角三角形不存在点D,使四面体ABCD是正三棱锥存在点D,使CD与AB垂直并且相等存在无数个点D,使点O在四面体ABCD的外接球面上其中真命题的序号是()ABCD5 已知角的终边经过点P(4,m),且sin=,则m等于( )A3B3CD36 如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )A30B50C75D1507 已知函数f(x)=x3+(1b)x2a(b3)x+b2的图象过原点,且在原点处的切线斜率是3,则不等式组所确定的平面区域在x2+y2=4内的面积为( )ABCD28 在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( )A众数B平均数C中位数D标准差9 如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )A10 13B12.5 12C12.5 13D10 1510已知集合,则( ) A B C D【命题意图】本题考查对数不等式解法和集合的运算等基础知识,意在考查基本运算能力11运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为( )Ay=x+2By=Cy=3xDy=3x312函数f(x)=x2+,则f(3)=( )A8B9C11D10二、填空题13【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间内,则正整数的值为_14在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB的距离是15函数f(x)=x2ex在区间(a,a+1)上存在极值点,则实数a的取值范围为16(2)7的展开式中,x2的系数是17已知平面向量,的夹角为,向量,的夹角为,则与的夹角为_,的最大值为 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.18已知函数f(x)=x2+xb+(a,b为正实数)只有一个零点,则+的最小值为三、解答题19已知函数,且()求的解析式;()若对于任意,都有,求的最小值;()证明:函数的图象在直线的下方20(本小题满分12分)如图,多面体中,四边形ABCD为菱形,且,.(1)求证:;(2)若,求三棱锥的体积.21(本小题满分12分)如图,四棱锥中,底面为矩形,平面,是的中点.(1)证明:平面;(2)设,三棱锥的体积,求到平面的距离.11122数列中,且满足.(1)求数列的通项公式;(2)设,求.23已知x2y2+2xyi=2i,求实数x、y的值24已知等差数列满足:=2,且,成等比数列。(1) 求数列的通项公式。(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.阿成区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】解:f(x+2)=f(x),f(x+4)=f(x+2)=f(x),即f(x+4)=f(x),即函数的周期是4a2017=f(2017)=f(5044+1)=f(1),f(x)为偶函数,当2x0时,f(x)=2x,f(1)=f(1)=,a2017=f(1)=,故选:D【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键2 【答案】D【解析】解:函数f(x)=(x3)ex,f(x)=ex+(x3)ex=(x2)ex,令f(x)0,即(x2)ex0,x20,解得x2,函数f(x)的单调递增区间是(2,+)故选:D【点评】本题考查了利用导数判断函数的单调性以及求函数的单调区间的应用问题,是基础题目3 【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是 53,故选:D【点评】本题主要考查分步计数原理的应用,属于基础题4 【答案】D【解析】【分析】对于可构造四棱锥CABD与四面体OABC一样进行判定;对于,使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥;对于取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,对于先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r,可判定的真假【解答】解:四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,AC=BC=,AB=当四棱锥CABD与四面体OABC一样时,即取CD=3,AD=BD=2此时点D,使四面体ABCD有三个面是直角三角形,故不正确使AB=AD=BD,此时存在点D,使四面体ABCD是正三棱锥,故不正确;取CD=AB,AD=BD,此时CD垂直面ABD,即存在点D,使CD与AB垂直并且相等,故正确;先找到四面体OABC的内接球的球心P,使半径为r,只需PD=r即可存在无数个点D,使点O在四面体ABCD的外接球面上,故正确故选D5 【答案】B【解析】解:角的终边经过点P(4,m),且sin=,可得,(m0)解得m=3故选:B【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查6 【答案】B【解析】解:该几何体是四棱锥,其底面面积S=56=30,高h=5,则其体积V=Sh=305=50故选B7 【答案】 B【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2则f(x)=x3x2+ax,函数的导数f(x)=x22x+a,因为原点处的切线斜率是3,即f(0)=3,所以f(0)=a=3,故a=3,b=2,所以不等式组为则不等式组确定的平面区域在圆x2+y2=4内的面积,如图阴影部分表示,所以圆内的阴影部分扇形即为所求kOB=,kOA=,tanBOA=1,BOA=,扇形的圆心角为,扇形的面积是圆的面积的八分之一,圆x2+y2=4在区域D内的面积为4=,故选:B【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键8 【答案】D【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错平均数86,88不相等,B错中位数分别为86,88,不相等,C错A样本方差S2= (8286)2+2(8486)2+3(8686)2+4(8886)2=4,标准差S=2,B样本方差S2= (8488)2+2(8688)2+3(8888)2+4(9088)2=4,标准差S=2,D正确故选D【点评】本题考查众数、平均数、中位标准差的定义,属于基础题9 【答案】C【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标,中间的一个矩形最高,故10与15的中点是12.5,众数是12.5 而中位数是把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可中位数是13故选:C【点评】用样本估计总体,是研究统计问题的一个基本思想方法频率分布直方图中小长方形的面积=组距,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型10【答案】D【解析】由已知得,故,故选D11【答案】 C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上故选:C【点评】本题考查了程序框图的应用问题,是基础题目12【答案】C【解析】解:函数=,f(3)=32+2=11故选C二、填空题13【答案】2【解析】14【答案】 【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(,),故AB的斜率为,故直线AB的方程为 y=(x3),即x+3y12=0,所以O点到直线AB的距离是=,故答案为:【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题15【答案】(3,2)(1,0) 【解析】解:函数f(x)=x2ex的导数为y=2xex+x2ex =xex (x+2),令y=0,则x=0或2,2x0上单调递减,(,2),(0,+)上单调递增,0或2是函数的极值点,函数f(x)=x2ex在区间(a,a+1)上存在极值点,a2a+1或a0a+1,3a2或1a0故答案为:(3,2)(1,0)16【答案】280 解:(2)7的展开式的通项为=由,得r=3x2的系数是故答案为:28017【答案】,. 【解析】18【答案】9+4 【解析】解:函数f(x)=x2+xb+只有一个零点,=a4(b+)=0,a+4b=1,a,b为正实数,+=(+)(a+4b)=9+9+2=9+4当且仅当=,即a=b时取等号,+的最小值为:9+4故答案为:9+4【点评】本题考查基本不等式,得出a+4b=1是解决问题的关键,属基础题三、解答题19【答案】【解析】【知识点】导数的综合运用利用导数研究函数的单调性【试题解析】()对求导,得,所以,解得,所以()由,得,因为,所以对于任意,都有设,则令,解得当x变化时,与的变化情况如下表:所以当时,因为对于任意,都有成立,所以所以的最小值为()证明:“函数的图象在直线的下方”等价于“”,即要证,所以只要证由(),得,即(当且仅当时等号成立)所以只要证明当时,即可设,所以,令,解得由,得,所以在上为增函数所以,即所以故函数的图象在直线的下方20【答案】【解析】【命题意图】本小题主要考查空间直线与直线、直线与平面的位置关系及几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等(2)在中,21【答案】(1)证明见解析;(2).【解析】试题解析:(1)设和交于点,连接,因为为矩形,所以为的中点,又为的中点,所以,且平面,平面,所以平面.(2),由,可得,作交于.由题设知平面,所以,故平面,又,所以到平面的距离为.1考点:1、棱锥的体积公式;2、直线与平面平行的判定定理.22【答案】(1);(2)【解析】试题分析:(1)由,所以是等差数列且,即可求解数列的通项公式;(2)由(1)令,得,当时,;当时,;当时,即可分类讨论求解数列当时,.1考点:等差数列的通项公式;数列的求和23【答案】 【解析】解:由复数相等的条件,得(4分)解得或(8分)【点评】本题考查复数相等的条件,以及方程思想,属于基础题24【答案】见解析。【解析】(1)设数列an的公差为d,依题意,2,2+d,2+4d成比数列,故有(2+d)2=2(2+4d),化
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 投资顾问职业资格认证考试试题及答案解析
- 护理副高职称考试试题及答案真题题库
- 招投标知识试题及答案
- 教学评估总结报告5篇
- 数二真题及答案解析2001
- 高中学生心理安全健康的课件
- 民族理论试卷及参考答案B
- 柴油加氢泄漏应急预案(3篇)
- 2025年三基考试题目
- 2025年警察招聘考试公安基础知识考试试题及参考答案
- 银行贷款项目尽职调查完整报告模板
- 2025年哈市冰城骨干教师考试试题及答案
- 文化安全方面的案例
- 网络安全市场2025年市场竞争格局变化可行性分析报告
- PRP技术治疗骨关节疼痛
- 口腔门诊护士培训课件
- 高压用电安全培训课件
- 2025至2030中国高模量碳纤维行业产业运行态势及投资规划深度研究报告
- 轮机安全操作培训内容课件
- 2025年兰州市初中语文学业水平考试卷附答案解析
- 2025年沈阳市事业单位教师招聘考试教育心理学试题
评论
0/150
提交评论