




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
市中区高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 抛物线y2=8x的焦点到双曲线的渐近线的距离为( )A1BCD2 已知实数x,y满足有不等式组,且z=2x+y的最大值是最小值的2倍,则实数a的值是( )A2BCD3 如图甲所示, 三棱锥 的高 ,分别在 和上,且,图乙的四个图象大致描绘了三棱锥的体积与的变化关系,其中正确的是( ) A B C. D11114 抛物线y=x2上的点到直线4x+3y8=0距离的最小值是( )ABCD35 已知集合,则( )A B C D【命题意图】本题考查集合的交集运算,意在考查计算能力6 下面的结构图,总经理的直接下属是( )A总工程师和专家办公室B开发部C总工程师、专家办公室和开发部D总工程师、专家办公室和所有七个部7 设D、E、F分别是ABC的三边BC、CA、AB上的点,且=2, =2, =2,则与( )A互相垂直B同向平行C反向平行D既不平行也不垂直8 如图,在长方形ABCD中,AB=,BC=1,E为线段DC上一动点,现将AED沿AE折起,使点D在面ABC上的射影K在直线AE上,当E从D运动到C,则K所形成轨迹的长度为( )ABCD9 下列函数中哪个与函数y=x相等( )Ay=()2By=Cy=Dy=10已知函数,则曲线在点处切线的斜率为( )A1 B C2 D11双曲线的左右焦点分别为,过的直线与双曲线的右支交于两点,若是以为直角顶点的等腰直角三角形,则( )A B C D12已知函数f(x)=ax33x2+1,若f(x)存在唯一的零点x0,且x00,则实数a的取值范围是( )A(1,+)B(2,+)C(,1)D(,2)二、填空题13已知A(1,0),P,Q是单位圆上的两动点且满足,则+的最大值为14已知,若,则= 15若实数x,y满足x2+y22x+4y=0,则x2y的最大值为16设集合 ,满足,求实数_.17已知实数x,y满足,则目标函数z=x3y的最大值为18已知函数f(x)的定义域为1,5,部分对应值如下表,f(x)的导函数y=f(x)的图象如图示 x1045f(x)1221下列关于f(x)的命题:函数f(x)的极大值点为0,4;函数f(x)在0,2上是减函数;如果当x1,t时,f(x)的最大值是2,那么t的最大值为4;当1a2时,函数y=f(x)a有4个零点;函数y=f(x)a的零点个数可能为0、1、2、3、4个其中正确命题的序号是三、解答题19(本小题满分10分)选修4-5:不等式选讲已知函数(1)若不等式的解集为,求实数的值;(2)若不等式,对任意的实数恒成立,求实数的最小值【命题意图】本题主要考查绝对值不等式的解法、三角不等式、基本不等式等基础知识,以及考查等价转化的能力、逻辑思维能力、运算能力20某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励记奖金为y(单位:万元),销售利润为x(单位:万元)(1)写出奖金y关于销售利润x的关系式;(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?21(本小题满分16分) 在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式(,为常数),其中与成反比,与的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套.(1) 求的表达式;(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大(保留1位小数)22已知等差数列的公差,()求数列的通项公式;()设,记数列前n项的乘积为,求的最大值23已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示()求椭圆E的方程;()判断ABCD能否为菱形,并说明理由()当ABCD的面积取到最大值时,判断ABCD的形状,并求出其最大值24(本小题满分10分)选修4-1:几何证明选讲如图,直线与圆相切于点,是过点的割线,点是线段的中点.(1)证明:四点共圆;(2)证明:.市中区高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】解:因为抛物线y2=8x,由焦点公式求得:抛物线焦点为(2,0)又双曲线渐近线为y=有点到直线距离公式可得:d=1故选A【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法其中应用到点到直线的距离公式,包含知识点多,属于综合性试题2 【答案】B【解析】解:由约束条件作出可行域如图,联立,得A(a,a),联立,得B(1,1),化目标函数z=2x+y为y=2x+z,由图可知zmax=21+1=3,zmin=2a+a=3a,由6a=3,得a=故选:B【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题3 【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题. 4 【答案】A【解析】解:由,得3x24x+8=0=(4)2438=800所以直线4x+3y8=0与抛物线y=x2无交点设与直线4x+3y8=0平行的直线为4x+3y+m=0联立,得3x24xm=0由=(4)243(m)=16+12m=0,得m=所以与直线4x+3y8=0平行且与抛物线y=x2相切的直线方程为4x+3y=0所以抛物线y=x2上的一点到直线4x+3y8=0的距离的最小值是=故选:A【点评】本题考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了两条平行线间的距离公式,是中档题5 【答案】C【解析】当时,所以,故选C6 【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部读结构图的顺序是按照从上到下,从左到右的顺序故选C【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读7 【答案】D【解析】解:如图所示,ABC中, =2, =2, =2,根据定比分点的向量式,得=+,=+, =+,以上三式相加,得+=,所以,与反向共线【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目8 【答案】 D【解析】解:由题意,将AED沿AE折起,使平面AED平面ABC,在平面AED内过点D作DKAE,K为垂足,由翻折的特征知,连接DK,则DKA=90,故K点的轨迹是以AD为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK=,取O为AD的中点,得到OAK是正三角形故K0A=,K0D=,其所对的弧长为=,故选:D9 【答案】B【解析】解:A函数的定义域为x|x0,两个函数的定义域不同B函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数C函数的定义域为R,y=|x|,对应关系不一致D函数的定义域为x|x0,两个函数的定义域不同故选B【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数10【答案】A【解析】试题分析:由已知得,则,所以考点:1、复合函数;2、导数的几何意义.11【答案】C【解析】试题分析:设,则,因为,所以,解得,所以,在直角三角形中,由勾股定理得,因为,所以,所以.考点:直线与圆锥曲线位置关系【思路点晴】本题考查直线与圆锥曲线位置关系,考查双曲线的定义,考查解三角形.由于题目给定的条件是等腰直角三角形,就可以利用等腰直角三角形的几何性质来解题.对于圆锥曲线的小题,往往要考查圆锥曲线的定义,本题考查双曲线的定义:动点到两个定点距离之差的绝对值为常数.利用定义和解直角三角形建立方程,从而求出离心率的平方.111.Com12【答案】D【解析】解:f(x)=ax33x2+1,f(x)=3ax26x=3x(ax2),f(0)=1;当a=0时,f(x)=3x2+1有两个零点,不成立;当a0时,f(x)=ax33x2+1在(,0)上有零点,故不成立;当a0时,f(x)=ax33x2+1在(0,+)上有且只有一个零点;故f(x)=ax33x2+1在(,0)上没有零点;而当x=时,f(x)=ax33x2+1在(,0)上取得最小值;故f()=3+10;故a2;综上所述,实数a的取值范围是(,2);故选:D二、填空题13【答案】 【解析】解:设=,则=,的方向任意+=1,因此最大值为故答案为:【点评】本题考查了数量积运算性质,考查了推理能力 与计算能力,属于中档题14【答案】【解析】试题分析:因为,所以,又,因此,因为,所以,考点:指对数式运算15【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x2y,再利用z的几何意义求最值,只需求出直线z=x2y过图形上的点A的坐标,即可求解【解答】解:方程x2+y22x+4y=0可化为(x1)2+(y+2)2=5,即圆心为(1,2),半径为的圆,(如图)设z=x2y,将z看做斜率为的直线z=x2y在y轴上的截距,经平移直线知:当直线z=x2y经过点A(2,4)时,z最大,最大值为:10故答案为:1016【答案】【解析】考点:一元二次不等式的解法;集合的运算.【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键.17【答案】5 【解析】解:由z=x3y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点C时,直线y=的截距最小,此时z最大,由,解得,即C(2,1)代入目标函数z=x3y,得z=23(1)=2+3=5,故答案为:518【答案】 【解析】解:由导数图象可知,当1x0或2x4时,f(x)0,函数单调递增,当0x2或4x5,f(x)0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以正确;正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x1,t函数f(x)的最大值是4,当2t5,所以t的最大值为5,所以不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)a有几个零点,所以不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)1或1f(2)2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以正确,综上正确的命题序号为故答案为:【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键三、解答题19【答案】【解析】(1)由题意,知不等式解集为由,得,2分所以,由,解得4分(2)不等式等价于,由题意知6分 20【答案】 【解析】解:(1)由题意,当销售利润不超过8万元时,按销售利润的1%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励,0x8时,y=0.15x;x8时,y=1.2+log5(2x15)奖金y关于销售利润x的关系式y=(2)由题意知1.2+log5(2x15)=3.2,解得x=20所以,小江的销售利润是20万元【点评】本题以实际问题为载体,考查函数模型的构建,考查学生的计算能力,属于中档题21【答案】(1) ()(2) 试题解析:(1) 因为与成反比,与的平方成正比, 所以可设:,则则 2分因为销售价格为5元/套时,每日可售出套题21千套,销售价格为2.5元/套时,每日可售出套题69千套所以,即,解得:, 6分所以, () 8分(2) 由(1)可知,套题每日的销售量, 答:当销售价格为元/套时,网校每日销售套题所获得的利润最大.16分考点:利用导数求函数最值22【答案】【解析】【知识点】等差数列【试题解析】()由题意,得解得或(舍)所以()由(),得所以所以只需求出的最大值由(),得因为,所以当,或时,取到最大值所以的最大值为23【答案】 【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3椭圆E的方程为=1(II)假设ABCD能为菱形,则OAOB,kOAkOB=1当ABx轴时,把x=1代入椭圆方程可得: =1,解得y=,取A,则|AD|=2,|AB|=3,此时ABCD不能为菱形当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2)联立,化为:(3+4k2)x2+8k2x+4k212=0,x1+x2=,x1x2=kOAkOB=,假设=1,化为k2=,因此平行四边形ABCD不可能是菱形综上可得:平行四边形ABCD不可能是菱形(III)当ABx轴时,由(II)可得:|AD|=2,|AB|=3,此时ABCD为矩形,S矩形ABCD=6当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年初创企业家培训课程考试题及答案详解
- 2025-2026学年北师大版(2024)小学数学三年级上册《看一看(四)》教学设计
- 2025年纺织纤维色浆项目合作计划书
- 河北省石家庄第二十八中学2025-2026学年九年级上学期开学考考试英语试卷(含笔试答案无听力音频及原文)
- 第二章 直角三角形的边角关系 单元测试(基础卷)(含答案)初中数学鲁教版(五四制)(2024)九年级上册
- 学前心理学试题及答案
- 2025年辽宁省锦州实验学校中考数学三模试卷(含部分答案)
- 2025年无缝管热连轧机项目发展计划
- 扭伤安全培训反思课件
- 打造卓越销售团队课件教学
- DB11T 2441-2025 学校食堂清洁和消毒规范
- 肩关节护理课件
- DB42T 1917.1-2022 中药材 水蛭(日本医蛭)养殖与加工技术规程 第1部分:种苗繁育
- 头疗课件培训
- 透视高考政治真题研究山东高考政治命题特点
- 幼儿园中国传统文化培训
- 牙周疾病治疗沟通讲课件
- 幼儿园开学卫生消毒培训
- 患者的入院护理课件
- 聚磷酸铵阻燃剂市场分析报告
- 2024年全国导游资格考试《全国导游基础知识》真题和解析
评论
0/150
提交评论