




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
乌拉特前旗第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 数列1,的前100项的和等于( )ABCD2 已知均为正实数,且,则( )A B C D3 已知向量=(1,1,0),=(1,0,2)且k+与2互相垂直,则k的值是( )A1BCD4 在ABC中,sinB+sin(AB)=sinC是sinA=的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也非必要条件5 圆锥的高扩大到原来的 倍,底面半径缩短到原来的,则圆锥的体积( ) A.缩小到原来的一半 B.扩大到原来的倍 C.不变 D.缩小到原来的6 已知x,y满足,且目标函数z=2x+y的最小值为1,则实数a的值是( )A1BCD7 已知是ABC的一个内角,tan=,则cos(+)等于( )ABCD8 设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f(x)的图象可能是( )ABCD9 若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是( )ABCD10将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( )A1372B2024C3136D449511已知F1,F2是椭圆和双曲线的公共焦点,M是它们的一个公共点,且F1MF2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A2BCD412方程x2+2ax+y2=0(a0)表示的圆( )A关于x轴对称B关于y轴对称C关于直线y=x轴对称D关于直线y=x轴对称二、填空题13已知函数的三个零点成等比数列,则 .14阅读下图所示的程序框图,运行相应的程序,输出的的值等于_. 15已知函数.表示中的最小值,若函数恰有三个零点,则实数的取值范围是 16若函数的定义域为,则函数的定义域是 17有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_元18用“”或“”号填空:30.830.7三、解答题19如图,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成角为60()求证:AC平面BDE;()求二面角FBED的余弦值;()设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论20已知,其中e是自然常数,aR()讨论a=1时,函数f(x)的单调性、极值; ()求证:在()的条件下,f(x)g(x)+21已知函数f(x)=aln(x+1)+x2x,其中a为非零实数()讨论f(x)的单调性;()若y=f(x)有两个极值点,且,求证:(参考数据:ln20.693) 22已知三棱柱ABCA1B1C1,底面三角形ABC为正三角形,侧棱AA1底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF平面BEC1(2)求A到平面BEC1的距离23设圆C满足三个条件过原点;圆心在y=x上;截y轴所得的弦长为4,求圆C的方程24数列an满足a1=,an(,),且tanan+1cosan=1(nN*)()证明数列tan2an是等差数列,并求数列tan2an的前n项和;()求正整数m,使得11sina1sina2sinam=1 乌拉特前旗第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:=1故选A2 【答案】A【解析】考点:对数函数,指数函数性质3 【答案】D【解析】解: =(1,1,0),=(1,0,2),k+=k(1,1,0)+(1,0,2)=(k1,k,2),2=2(1,1,0)(1,0,2)=(3,2,2),又k+与2互相垂直,3(k1)+2k4=0,解得:k=故选:D【点评】本题考查空间向量的数量积运算,考查向量数量积的坐标表示,是基础的计算题4 【答案】A【解析】解:sinB+sin(AB)=sinC=sin(A+B),sinB+sinAcosBcosAsinB=sinAcosB+cosAsinB,sinB=2cosAsinB,sinB0,cosA=,A=,sinA=,当sinA=,A=或A=,故在ABC中,sinB+sin(AB)=sinC是sinA=的充分非必要条件,故选:A5 【答案】A【解析】试题分析:由题意得,设原圆锥的高为,底面半径为,则圆锥的体积为,将圆锥的高扩大到原来的倍,底面半径缩短到原来的,则体积为,所以,故选A.考点:圆锥的体积公式.16 【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=故选:B【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题7 【答案】B【解析】解:由于是ABC的一个内角,tan=,则=,又sin2+cos2=1,解得sin=,cos=(负值舍去)则cos(+)=coscossinsin=()=故选B【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题8 【答案】D【解析】解:根据函数与导数的关系:可知,当f(x)0时,函数f(x)单调递增;当f(x)0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x0时,函数f(x)单调递减,则f(x)0,排除选项A,C当x0时,函数f(x)先单调递增,则f(x)0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题9 【答案】 A【解析】解:椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,圆的半径,由,得2cb,再平方,4c2b2,在椭圆中,a2=b2+c25c2,;由,得b+2c2a,再平方,b2+4c2+4bc4a2,3c2+4bc3a2,4bc3b2,4c3b,16c29b2,16c29a29c2,9a225c2,综上所述,故选A10【答案】 C【解析】【专题】排列组合【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法这类三角形共有473=1372个另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点这类三角形共有42121=1764个综上可知,可得不同三角形的个数为1372+1764=3136故选:C【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题11【答案】 C【解析】解:设椭圆的长半轴为a,双曲线的实半轴为a1,(aa1),半焦距为c,由椭圆和双曲线的定义可知,设|MF1|=r1,|MF2|=r2,|F1F2|=2c,椭圆和双曲线的离心率分别为e1,e2F1MF2=,由余弦定理可得4c2=(r1)2+(r2)22r1r2cos,在椭圆中,化简为即4c2=4a23r1r2,即=1,在双曲线中,化简为即4c2=4a12+r1r2,即=1,联立得, +=4,由柯西不等式得(1+)(+)(1+)2,即(+)24=,即+,当且仅当e1=,e2=时取等号即取得最大值且为故选C【点评】本题主要考查椭圆和双曲线的定义和性质,利用余弦定理和柯西不等式是解决本题的关键难度较大12【答案】A【解析】解:方程x2+2ax+y2=0(a0)可化为(x+a)2+y2=a2,圆心为(a,0),方程x2+2ax+y2=0(a0)表示的圆关于x轴对称,故选:A【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键二、填空题13【答案】考点:三角函数的图象与性质,等比数列的性质,对数运算【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题14【答案】 【解析】解析:本题考查程序框图中的循环结构第1次运行后,;第2次运行后,;第3次运行后,;第4次运行后,;第5次运行后,此时跳出循环,输出结果程序结束15【答案】【解析】试题分析:,因为,所以要使恰有三个零点,须满足,解得考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.16【答案】【解析】试题分析:依题意得.考点:抽象函数定义域17【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。故答案为:146418【答案】 【解析】解:y=3x是增函数,又0.80.7,30.830.7故答案为:【点评】本题考查对数函数、指数函数的性质和应用,是基础题三、解答题19【答案】【解析】【分析】(I)由已知中DE平面ABCD,ABCD是边长为3的正方形,我们可得DEAC,ACBD,结合线面垂直的判定定理可得AC平面BDE;()以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF和平面BDE的法向量,代入向量夹角公式,即可求出二面角FBED的余弦值;()由已知中M是线段BD上一个动点,设M(t,t,0)根据AM平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置【解答】证明:()因为DE平面ABCD,所以DEAC因为ABCD是正方形,所以ACBD,从而AC平面BDE(4分)解:()因为DA,DC,DE两两垂直,所以建立空间直角坐标系Dxyz如图所示因为BE与平面ABCD所成角为600,即DBE=60,所以由AD=3,可知,则A(3,0,0),B(3,3,0),C(0,3,0),所以,设平面BEF的法向量为=(x,y,z),则,即令,则=因为AC平面BDE,所以为平面BDE的法向量,所以cos因为二面角为锐角,所以二面角FBED的余弦值为(8分)()点M是线段BD上一个动点,设M(t,t,0)则因为AM平面BEF,所以=0,即4(t3)+2t=0,解得t=2此时,点M坐标为(2,2,0),即当时,AM平面BEF(12分)20【答案】 【解析】解:(1)a=1时,因为f(x)=xlnx,f(x)=1,当0x1时,f(x)0,此时函数f(x)单调递减当1xe时,f(x)0,此时函数f(x)单调递增所以函数f(x)的极小值为f(1)=1(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e上的最小值为1又g(x)=,所以当0xe时,g(x)0,此时g(x)单调递增所以g(x)的最大值为g(e)=,所以f(x)ming(x)max,所以在(1)的条件下,f(x)g(x)+【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题21【答案】 【解析】解:()当a10时,即a1时,f(x)0,f(x)在(1,+)上单调递增;当0a1时,由f(x)=0得,故f(x)在上单调递增,在上单调递减,在上单调递增;当a0时,由f(x)=0得,f(x)在上单调递减,在上单调递增证明:()由(I)知,0a1,且,所以+=0,=a1由0a1得,01构造函数,设h(x)=2(x2+1)ln(x+1)2x+x2,x(0,1),则,因为0x1,所以,h(x)0,故h(x)在(0,1)上单调递增,所以h(x)h(0)=0,即g(x)0,所以g(x)在(0,1)上单调递增,所以,故 22【答案】 【解析】解:(1)取BC1的中点H,连接HE、HF,则BCC1中,HFCC1且HF=CC1又平行四边形AA1C1C中,AECC1且AE=CC1AEHF且AE=HF,可得四边形AFHE为平行四边形,AFHE,AF平面REC1,HE平面REC1AF平面REC1(2)等边ABC中,高AF=,所以EH=AF=由三棱柱ABCA1B1C1是正三棱柱,得C1到平面AA1B1B的距离等于RtA1C1ERtABE,EC1=EB,得EHBC1可得S=BC1EH=,而SABE=ABBE=2由等体积法得VABEC1=VC1BEC,Sd=SABE,(d为点A到平面BEC1的距离)即d=2,解之得d=点A到平面BEC1的距离等于【点评】本题在正三棱柱中求证线面平行,并求点到平面的距离着重考查了正三棱柱的性质、线面平行判定定理和等体积法求点到平面的距离等知识,属于中档题23【答案】 【解析】解:根据题意画出图形,如图所示:当圆心C1在第一象限时,过C1作C1D垂直于x轴,C1B垂直于y轴,连接AC1,由C1在直线y=x上,得到C1B=C1D,则四边形OBC1D为正方形,与y轴截取的弦OA=4,OB=C1D=OD=C1B=2,即圆心C1(2,2),在直角三角形ABC1中,根据勾股定理得:AC1=2,则圆C1方程为:(x2)2+(y2)2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 特聘教师经费管理办法
- 特许经营品牌管理办法
- 环保强制责任管理办法
- 环保管理考核管理办法
- 环境教育培训管理办法
- 现场管理办法由谁指定
- 玻璃物流仓储管理办法
- 珠海工程资料管理办法
- 班组安全管理办法心得
- 瑞士银行员工管理办法
- 2025年全国“质量月”质量知识竞赛题库及答案
- 子宫多发性平滑肌瘤的个案护理
- 要素式强制执行申请书(申请执行用)
- 慢性根尖周炎病例汇报
- 2025年秋数学(新)人教版三年级上课件:第1课时 几分之一
- 公司项目谋划管理办法
- 2025年职业指导师考试试卷:职业指导师专业能力
- 小学英语人教版四年级下册 巩固强化练(含答案)
- 2025-2026学年粤教粤科版(2024)小学科学二年级上册(全册)教学设计(附目录)
- 2025年山东高考历史试卷真题讲评及备考策略指导(课件)
- 供养中心考试题及答案
评论
0/150
提交评论