维西傈僳族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
维西傈僳族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
维西傈僳族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
维西傈僳族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
维西傈僳族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

维西傈僳族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知,其中i为虚数单位,则a+b=( )A1B1C2D32 已知函数y=f(x)对任意实数x都有f(1+x)=f(1x),且函数f(x)在1,+)上为单调函数若数列an是公差不为0的等差数列,且f(a6)=f(a23),则an的前28项之和S28=( )A7B14C28D563 是平面内不共线的两向量,已知,若三点共线,则的值是( )A1 B2 C-1 D-24 下列函数中,在其定义域内既是奇函数又是减函数的是( )Ay=|x|(xR)By=(x0)Cy=x(xR)Dy=x3(xR)5 如图是一个多面体的三视图,则其全面积为( )ABCD6 “方程+=1表示椭圆”是“3m5”的( )条件A必要不充分B充要C充分不必要D不充分不必要7 如图,已知正方体ABCDA1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点P是上底面A1B1C1D1内一动点,且满足点P到点F的距离等于点P到平面ABB1A1的距离,则当点P运动时,PE的最小值是( )A5B4C4D28 已知函数f(x)=x(1+a|x|)设关于x的不等式f(x+a)f(x)的解集为A,若,则实数a的取值范围是( )ABCD9 方程表示的曲线是( )A一个圆 B 两个半圆 C两个圆 D半圆10如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别为( )A10 13B12.5 12C12.5 13D10 1511已知平面向量,若与垂直,则实数值为( )A B C D【命题意图】本题考查平面向量数量积的坐标表示等基础知识,意在考查基本运算能力12已知i是虚数单位,则复数等于( )A +iB +iCiDi二、填空题13已知函数f(x)=,若关于x的方程f(x)=k有三个不同的实根,则实数k的取值范围是14(若集合A2,3,7,且A中至多有1个奇数,则这样的集合共有个15函数f(x)=log(x22x3)的单调递增区间为16若非零向量,满足|+|=|,则与所成角的大小为17已知a,b是互异的负数,A是a,b的等差中项,G是a,b的等比中项,则A与G的大小关系为18【泰州中学2018届高三10月月考】设二次函数(为常数)的导函数为,对任意,不等式恒成立,则的最大值为_三、解答题19已知函数f(x)=x|xm|,xR且f(4)=0(1)求实数m的值(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围 20已知在等比数列an中,a1=1,且a2是a1和a31的等差中项(1)求数列an的通项公式;(2)若数列bn满足b1+2b2+3b3+nbn=an(nN*),求bn的通项公式bn21已知p:x2+2xm0对xR恒成立;q:x2+mx+1=0有两个正根若pq为假命题,pq为真命题,求m的取值范围22已知三棱柱ABCA1B1C1,底面三角形ABC为正三角形,侧棱AA1底面ABC,AB=2,AA1=4,E为AA1的中点,F为BC的中点(1)求证:直线AF平面BEC1(2)求A到平面BEC1的距离23(本题满分15分)正项数列满足,(1)证明:对任意的,;(2)记数列的前项和为,证明:对任意的,【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.24已知(+)n展开式中的所有二项式系数和为512,(1)求展开式中的常数项;(2)求展开式中所有项的系数之和维西傈僳族自治县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:由得a+2i=bi1,所以由复数相等的意义知a=1,b=2,所以a+b=1另解:由得ai+2=b+i(a,bR),则a=1,b=2,a+b=1故选B【点评】本题考查复数相等的意义、复数的基本运算,是基础题2 【答案】C【解析】解:函数y=f(x)对任意实数x都有f(1+x)=f(1x),且函数f(x)在1,+)上为单调函数函数f(x)关于直线x=1对称,数列an是公差不为0的等差数列,且f(a6)=f(a23),a6+a23=2则an的前28项之和S28=14(a6+a23)=28故选:C【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题3 【答案】B【解析】考点:向量共线定理4 【答案】D【解析】解:y=|x|(xR)是偶函数,不满足条件,y=(x0)是奇函数,在定义域上不是单调函数,不满足条件,y=x(xR)是奇函数,在定义域上是增函数,不满足条件,y=x3(xR)奇函数,在定义域上是减函数,满足条件,故选:D5 【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,三棱柱的面积是32=6+,故选C【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小6 【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即3m5且m1,此时3m5成立,即充分性成立,当m=1时,满足3m5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件即必要性不成立故“方程+=1表示椭圆”是“3m5”的充分不必要条件故选:C【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题7 【答案】 D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0a4,0b4,P(x,y,4),0x4,0y4,则F(0,b,4),E(4,a,0),=(x,by,0),点P到点F的距离等于点P到平面ABB1A1的距离,当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),|PE|min=2故选:D【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识8 【答案】 A【解析】解:取a=时,f(x)=x|x|+x,f(x+a)f(x),(x)|x|+1x|x|,(1)x0时,解得x0;(2)0x时,解得0;(3)x时,解得,综上知,a=时,A=(,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,f(x+a)f(x),(x+1)|x+1|+1x|x|,(1)x1时,解得x0,矛盾;(2)1x0,解得x0,矛盾;(3)x0时,解得x1,矛盾;综上,a=1,A=,不合题意,排除C,故选A【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用9 【答案】A【解析】试题分析:由方程,两边平方得,即,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.10【答案】C【解析】解:众数是频率分布直方图中最高矩形的底边中点的横坐标,中间的一个矩形最高,故10与15的中点是12.5,众数是12.5 而中位数是把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标第一个矩形的面积是0.2,第三个矩形的面积是0.3,故将第二个矩形分成3:2即可中位数是13故选:C【点评】用样本估计总体,是研究统计问题的一个基本思想方法频率分布直方图中小长方形的面积=组距,各个矩形面积之和等于1,能根据直方图求众数和中位数,属于常规题型11【答案】A12【答案】A【解析】解:复数=,故选:A【点评】本题考查了复数的运算法则,属于基础题二、填空题13【答案】(0,1) 【解析】解:画出函数f(x)的图象,如图示:令y=k,由图象可以读出:0k1时,y=k和f(x)有3个交点,即方程f(x)=k有三个不同的实根,故答案为(0,1)【点评】本题考查根的存在性问题,渗透了数形结合思想,是一道基础题14【答案】6 【解析】解:集合A为2,3,7的真子集有7个,奇数3、7都包含的有3,7,则符合条件的有71=6个故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查15【答案】(,1) 【解析】解:函数的定义域为x|x3或x1令t=x22x3,则y=因为y=在(0,+)单调递减t=x22x3在(,1)单调递减,在(3,+)单调递增由复合函数的单调性可知函数的单调增区间为(,1)故答案为:(,1)16【答案】90 【解析】解:=与所成角的大小为90故答案为90【点评】本题用向量模的平方等于向量的平方来去掉绝对值17【答案】AG 【解析】解:由题意可得A=,G=,由基本不等式可得AG,当且仅当a=b取等号,由题意a,b是互异的负数,故AG故答案是:AG【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题18【答案】【解析】试题分析:根据题意易得:,由得:在R上恒成立,等价于:,可解得:,则:,令,故的最大值为考点:1.函数与导数的运用;2.恒成立问题;3.基本不等式的运用三、解答题19【答案】 【解析】解:(1)f(4)=0,4|4m|=0m=4,(2)f(x)=x|x4|=图象如图所示:由图象可知,函数在(,2),(4,+)上单调递增,在(2,4)上单调递减(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,由图可知k(0,4) 20【答案】 【解析】解:(1)设等比数列an的公比为q,由a2是a1和a31的等差中项得:2a2=a1+a31,2q=q2,q0,q=2,;(2)n=1时,由b1+2b2+3b3+nbn=an,得b1=a1=1n2时,由b1+2b2+3b3+nbn=an b1+2b2+3b3+(n1)bn1=an1得:,【点评】本题考查等差数列和等比数列的通项公式,考查了数列的递推式,解答的关键是想到错位相减,是基础题21【答案】 【解析】解:若p为真,则=44m0,即m1 若q为真,则,即m2 pq为假命题,pq为真命题,则p,q一真一假若p真q假,则,解得:m1 若p假q真,则,解得:m2 综上所述:m2,或m1 22【答案】 【解析】解:(1)取BC1的中点H,连接HE、HF,则BCC1中,HFCC1且HF=CC1又平行四边形AA1C1C中,AECC1且AE=CC1AEHF且AE=HF,可得四边形AFHE为平行四边形,AFHE,AF平面REC1,HE平面REC1AF平面REC1(2)等边ABC中,高AF=,所以EH=AF=由三棱柱ABCA1B1C1是正三棱柱,得C1到平面AA1B1B的距离等于RtA1C1ERtABE,EC1=EB,得EHBC1可得S=BC1EH=,而SABE=ABBE=2由等体积法得VABEC1=VC1BEC,Sd=SABE,(d为点A到平面BEC1的距离)即d=2,解之得d=点A到平面BEC1的距离等于【点评】本题在正三棱柱中求证线面平行,并求点到平面的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论