同心县第二中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
同心县第二中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
同心县第二中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
同心县第二中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
同心县第二中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷同心县第二中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 Sn是等差数列an的前n项和,若3a82a74,则下列结论正确的是( )AS1872 BS1976CS2080 DS21842 已知f(x)=4+ax1的图象恒过定点P,则点P的坐标是( )A(1,5)B(1,4)C(0,4)D(4,0)3 已知平面向量=(1,2),=(2,m),且,则=( )A(5,10)B(4,8)C(3,6)D(2,4)4 函数f(x)=ax3+bx2+cx+d的图象如图所示,则下列结论成立的是( )Aa0,b0,c0,d0Ba0,b0,c0,d0Ca0,b0,c0,d0Da0,b0,c0,d05 是首项,公差的等差数列,如果,则序号等于( )A667B668C669D6706 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( )A1BC2D47 已知函数f(x)=Asin(x)(A0,0)的部分图象如图所示,EFG是边长为2 的等边三角形,为了得到g(x)=Asinx的图象,只需将f(x)的图象( )A向左平移个长度单位B向右平移个长度单位C向左平移个长度单位D向右平移个长度单位8 以过椭圆+=1(ab0)的右焦点的弦为直径的圆与其右准线的位置关系是( )A相交B相切C相离D不能确定9 若复数(2+ai)2(aR)是实数(i是虚数单位),则实数a的值为( )A2B2C0D210已知抛物线与双曲线的一个交点为M,F为抛物线的焦点,若,则该双曲线的渐近线方程为 A、 B、 C、 D、11已知,若不等式对一切恒成立,则的最大值为( )A B C D 12已知命题“如果1a1,那么关于x的不等式(a24)x2+(a+2)x10的解集为”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有( )A0个B1个C2个D4个二、填空题13如图,函数f(x)的图象为折线 AC B,则不等式f(x)log2(x+1)的解集是14双曲线x2my2=1(m0)的实轴长是虚轴长的2倍,则m的值为15若函数y=ln(2x)为奇函数,则a=16定义在上的可导函数,已知的图象如图所示,则的增区间是 xy121O17已知,若,则= 18抛物线y2=4x的焦点为F,过F且倾斜角等于的直线与抛物线在x轴上方的曲线交于点A,则AF的长为三、解答题19在极坐标系下,已知圆O:=cos+sin和直线l:(1)求圆O和直线l的直角坐标方程;(2)当(0,)时,求直线l与圆O公共点的极坐标20(本小题满分10分)选修41:几何证明选讲如图,AB是O的直径,AC是O的切线,BC交O于E,过E的切线与AC交于D.(1)求证:CDDA;(2)若CE1,AB,求DE的长21求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线求双曲线C的方程(2)焦点在直线3x4y12=0 的抛物线的标准方程22在直角坐标系xOy中,直线l的参数方程为(t为参数)再以原点为极点,以x正半轴为极轴建立极坐标系,并使得它与直角坐标系xOy有相同的长度单位在该极坐标系中圆C的方程为=4sin(1)求圆C的直角坐标方程;(2)设圆C与直线l交于点A、B,若点M的坐标为(2,1),求|MA|+|MB|的值23已知f(x)=x2+ax+a(a2,xR),g(x)=ex,(x)=()当a=1时,求(x)的单调区间;()求(x)在x1,+)是递减的,求实数a的取值范围;()是否存在实数a,使(x)的极大值为3?若存在,求a的值;若不存在,请说明理由 24如图所示,在正方体ABCDA1B1C1D1中,E是棱DD1的中点()求直线BE与平面ABB1A1所成的角的正弦值;()在棱C1D1上是否存在一点F,使B1F平面A1BE?证明你的结论同心县第二中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】【解析】选B.3a82a74,3(a17d)2(a16d)4,即a19d4,S1818a118(a1d)不恒为常数S1919a119(a19d)76,同理S20,S21均不恒为常数,故选B.2 【答案】A【解析】解:令x1=0,解得x=1,代入f(x)=4+ax1得,f(1)=5,则函数f(x)过定点(1,5)故选A3 【答案】B【解析】解:排除法:横坐标为2+(6)=4,故选B4 【答案】A【解析】解:f(0)=d0,排除D,当x+时,y+,a0,排除C,函数的导数f(x)=3ax2+2bx+c,则f(x)=0有两个不同的正实根,则x1+x2=0且x1x2=0,(a0),b0,c0,方法2:f(x)=3ax2+2bx+c,由图象知当当xx1时函数递增,当x1xx2时函数递减,则f(x)对应的图象开口向上,则a0,且x1+x2=0且x1x2=0,(a0),b0,c0,故选:A5 【答案】C【解析】由已知,由得,故选C答案:C 6 【答案】B【解析】解:设圆柱的高为h,则V圆柱=12h=h,V球=,h=故选:B7 【答案】 A【解析】解:EFG是边长为2的正三角形,三角形的高为,即A=,函数的周期T=2FG=4,即T=4,解得=,即f(x)=Asinx=sin(x),g(x)=sinx,由于f(x)=sin(x)=sin(x),故为了得到g(x)=Asinx的图象,只需将f(x)的图象向左平移个长度单位故选:A【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题8 【答案】C【解析】解:设过右焦点F的弦为AB,右准线为l,A、B在l上的射影分别为C、D连接AC、BD,设AB的中点为M,作MNl于N根据圆锥曲线的统一定义,可得=e,可得|AF|+|BF|AC|+|BD|,即|AB|AC|+|BD|,以AB为直径的圆半径为r=|AB|,|MN|=(|AC|+|BD|)圆M到l的距离|MN|r,可得直线l与以AB为直径的圆相离故选:C【点评】本题给出椭圆的右焦点F,求以经过F的弦AB为直径的圆与右准线的位置关系,着重考查了椭圆的简单几何性质、圆锥曲线的统一定义和直线与圆的位置关系等知识,属于中档题9 【答案】C【解析】解:复数(2+ai)2=4a2+4ai是实数,4a=0,解得a=0故选:C【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题10【答案】【解析】:依题意,不妨设点M在第一象限,且Mx0,y0,由抛物线定义,|MF|x0,得5x02.x03,则y24,所以M3,2,又点M在双曲线上,241,则a2,a,因此渐近线方程为5x3y0.11【答案】C 【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题当(如图1)、(如图2)时,不等式不可能恒成立;当时,如图3,直线与函数图象相切时,切点横坐标为,函数图象经过点时,观察图象可得,选C12【答案】C【解析】解:若不等式(a24)x2+(a+2)x10的解集为”,则根据题意需分两种情况:当a24=0时,即a=2,若a=2时,原不等式为4x10,解得x,故舍去,若a=2时,原不等式为10,无解,符合题意;当a240时,即a2,(a24)x2+(a+2)x10的解集是空集,解得,综上得,实数a的取值范围是则当1a1时,命题为真命题,则命题的逆否命题为真命题,反之不成立,即逆命题为假命题,否命题也为假命题,故它的逆命题、否命题、逆否命题及原命题中是假命题的共有2个,故选:C【点评】本题考查了二次不等式的解法,四种命题真假关系的应用,注意当二次项的系数含有参数时,必须进行讨论,考查了分类讨论思想二、填空题13【答案】(1,1 【解析】解:在同一坐标系中画出函数f(x)和函数y=log2(x+1)的图象,如图所示:由图可得不等式f(x)log2(x+1)的解集是:(1,1,故答案为:(1,114【答案】4 【解析】解:双曲线x2my2=1化为x2=1,a2=1,b2=,实轴长是虚轴长的2倍,2a=22b,化为a2=4b2,即1=,解得m=4故答案为:4【点评】熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键15【答案】4 【解析】解:函数y=ln(2x)为奇函数,可得f(x)=f(x),ln(+2x)=ln(2x)ln(+2x)=ln()=ln()可得1+ax24x2=1,解得a=4故答案为:416【答案】(,2)【解析】试题分析:由,所以的增区间是(,2)考点:函数单调区间17【答案】【解析】试题分析:因为,所以,又,因此,因为,所以,考点:指对数式运算18【答案】4 【解析】解:由已知可得直线AF的方程为y=(x1),联立直线与抛物线方程消元得:3x210x+3=0,解之得:x1=3,x2=(据题意应舍去),由抛物线定义可得:AF=x1+=3+1=4故答案为:4【点评】本题考查直线与抛物线的位置关系,考查抛物线的定义,考查学生的计算能力,属于中档题三、解答题19【答案】 【解析】解:(1)圆O:=cos+sin,即2=cos+sin,故圆O 的直角坐标方程为:x2+y2=x+y,即x2+y2xy=0直线l:,即sincos=1,则直线的直角坐标方程为:yx=1,即xy+1=0(2)由,可得 ,直线l与圆O公共点的直角坐标为(0,1),故直线l 与圆O 公共点的一个极坐标为【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题20【答案】【解析】解:(1)证明:如图,连接AE,AB是O的直径,AC,DE均为O的切线,AECAEB90,DAEDEAB,DADE.C90B90DEADEC,DCDE,CDDA.(2)CA是O的切线,AB是直径,CAB90,由勾股定理得CA2CB2AB2,又CA2CECB,CE1,AB,1CBCB22,即CB2CB20,解得CB2,CA2122,CA.由(1)知DECA,所以DE的长为.21【答案】 【解析】解:(1)由椭圆+=1,得a2=8,b2=4,c2=a2b2=4,则焦点坐标为F(2,0),直线y=x为双曲线的一条渐近线,设双曲线方程为(0),即,则+3=4,=1双曲线方程为:;(2)由3x4y12=0,得,直线在两坐标轴上的截距分别为(4,0),(0,3),分别以(4,0),(0,3)为焦点的抛物线方程为:y2=16x或x2=12y【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双曲线方程是关键,是中档题22【答案】 【解析】解:(1)方程=4sin的两边同时乘以,得2=4sin,将极坐标与直角坐标互化公式代入上式,整理得圆C的直角坐标方程为x2+y24y=0(2)由消去t,得直线l的普通方程为y=x+3,因为点M(2,1)在直线l上,可设l的标准参数方程为,代入圆C的方程中,得设A,B对应的参数分别为t1,t2,由韦达定理,得0,t1t2=10,于是|MA|+|MB|=|t1|+|t2|=,即|MA|+|MB|=【点评】1极坐标方程化直角坐标方程,一般通过两边同时平方,两边同时乘以等方式,构造或凑配2,cos,sin,再利用互化公式转化常见互化公式有2=x2+y2,cos=x,sin=y,(x0)等2.参数方程化普通方程,关键是消参,常见消参方式有:代入法,两式相加、减,两式相乘、除,方程两边同时平方等3.运用参数方程解题时,应熟练参数方程中各量的含义,即过定点M0(x0,y0),且倾斜角为的直线的参数方程为,参数t表示以M0为起点,直线上任意一点M为终点的向量的数量,即当沿直线向上时,t=;当沿直线向下时,t=23【答案】 【解析】解:(I)当a=1时,(x)=(x2+x+1)ex(x)=ex(x2+x)当(x)0时,0x1;当(x)0时,x1或x0(x)单调减区间为(,0),(1,+),单调增区间为(0,1);(II)(x)=exx2+(2a)x(x)在x1,+)是递减的,(x)0在x1,+)恒成立,x2+(2a)x0在x1,+)恒成立,2ax在x1,+)恒成立,2a1a1a2,1a2;(III)(x)=(2x+a)exex(x2+ax+a)=exx2+(2a)x令(x)=0,得x=0或x=2a:由表可知,(x)极大=(2a)=(4a)ea2设(a)=(4a)ea2,(a)=(3a)ea20,(a)在(,2)上是增函数,(a)(2)=23,即(4a)ea23,不存在实数a,使(x)极大值为3 24【答案】 【解析】解:(I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EMAD又在正方体ABCDA1B1C1D1中AD平面ABB1A1,所以EM面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,EBM直线BE与平面ABB1A1所成的角设正方体的棱长为2,则EM=AD=2,BE=,于是在RtBEM中,即直线BE与平面ABB1A1所成的角的正弦值为()在棱C1D1上存在点F,使B1F平面A1BE,事实上,如图(b)所示,分别取C1D1和CD的中点F,G,连接EG,B

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论