长泰县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
长泰县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
长泰县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
长泰县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
长泰县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

长泰县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 下列函数中,为偶函数的是( )Ay=x+1By=Cy=x4Dy=x52 设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f(x)的图象可能是( )ABCD3 若命题p:xR,x20,命题q:xR,x,则下列说法正确的是( )A命题pq是假命题B命题p(q)是真命题C命题pq是真命题D命题p(q)是假命题4 “”是“A=30”的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也必要条件5 已知,其中是虚数单位,则的虚部为( )A B C D【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.6 已知双曲线=1(a0,b0)的渐近线与圆(x2)2+y2=1相切,则双曲线的离心率为( )ABCD7 已知在平面直角坐标系中,点,().命题:若存在点在圆上,使得,则;命题:函数在区间内没有零点.下列命题为真命题的是( )A B C D8 函数是周期为4的奇函数,且在上的解析式为,则( )A B C D【命题意图】本题考查函数的奇偶性和周期性、分段函数等基础知识,意在考查转化和化归思想和基本运算能力9 利用斜二测画法得到的:三角形的直观图是三角形;平行四边形的直观图是平行四边形;正方形的直观图是正方形;菱形的直观图是菱形以上结论正确的是( )A B C D10在ABC中,则这个三角形一定是( )A等腰三角形B直角三角形C等腰直角三角D等腰或直角三角形11某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A BC. D12已知函数f(x)是(,0)(0,+)上的奇函数,且当x0时,函数的部分图象如图所示,则不等式xf(x)0的解集是( )A(2,1)(1,2)B(2,1)(0,1)(2,+)C(,2)(1,0)(1,2)D(,2)(1,0)(0,1)(2,+)二、填空题13某种产品的加工需要 A,B,C,D,E五道工艺,其中 A必须在D的前面完成(不一定相邻),其它工艺的顺序可以改变,但不能同时进行,为了节省加工时间,B 与C 必须相邻,那么完成加工该产品的不同工艺的排列顺序有种(用数字作答)14在数列中,则实数a=,b=15若P(1,4)为抛物线C:y2=mx上一点,则P点到该抛物线的焦点F的距离为|PF|=16如图,E,F分别为正方形ABCD的边BC,CD的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是17直线2x+3y+6=0与坐标轴所围成的三角形的面积为18已知直线5x+12y+m=0与圆x22x+y2=0相切,则m=三、解答题19设f(x)=x2ax+2当x,使得关于x的方程f(x)tf(2a)=0有三个不相等的实数根,求实数t的取值范围 20(本小题满分12分)数列满足:,且.(1)求数列的通项公式;(2)求数列的前项和.21直三棱柱ABCA1B1C1 中,AA1=AB=AC=1,E,F分别是CC1、BC 的中点,AEA1B1,D为棱A1B1上的点(1)证明:DFAE;(2)是否存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为?若存在,说明点D的位置,若不存在,说明理由 22设数列an的前n项和为Sn,a1=1,Sn=nann(n1)(1)求证:数列an为等差数列,并分别求出an的表达式;(2)设数列的前n项和为Pn,求证:Pn;(3)设Cn=,Tn=C1+C2+Cn,试比较Tn与的大小 23已知函数f(x)=lnx的反函数为g(x)()若直线l:y=k1x是函数y=f(x)的图象的切线,直线m:y=k2x是函数y=g(x)图象的切线,求证:lm;()设a,bR,且ab,P=g(),Q=,R=,试比较P,Q,R的大小,并说明理由24设函数f(x)=emx+x2mx(1)证明:f(x)在(,0)单调递减,在(0,+)单调递增;(2)若对于任意x1,x2,都有|f(x1)f(x2)|e1,求m的取值范围 长泰县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:对于A,既不是奇函数,也不是偶函数,对于B,满足f(x)=f(x),是奇函数,对于C,定义域为R,满足f(x)=f(x),则是偶函数,对于D,满足f(x)=f(x),是奇函数,故选:C【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题2 【答案】D【解析】解:根据函数与导数的关系:可知,当f(x)0时,函数f(x)单调递增;当f(x)0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x0时,函数f(x)单调递减,则f(x)0,排除选项A,C当x0时,函数f(x)先单调递增,则f(x)0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题3 【答案】 B【解析】解:xR,x20,即不等式x20有解,命题p是真命题;x0时,x无解,命题q是假命题;pq为真命题,pq是假命题,q是真命题,p(q)是真命题,p(q)是真命题;故选:B【点评】考查真命题,假命题的概念,以及pq,pq,q的真假和p,q真假的关系4 【答案】B【解析】解:“A=30”“”,反之不成立故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题5 【答案】B【解析】由复数的除法运算法则得,所以的虚部为.6 【答案】D【解析】解:双曲线=1(a0,b0)的渐近线方程为 y=x,即xy=0根据圆(x2)2+y2=1的圆心(2,0)到切线的距离等于半径1,可得,1=, =,可得e=故此双曲线的离心率为:故选D【点评】本题考查点到直线的距离公式,双曲线的标准方程,以及双曲线的简单性质的应用,求出的值,是解题的关键7 【答案】A【解析】试题分析:命题:,则以为直径的圆必与圆有公共点,所以,解得,因此,命题是真命题.命题:函数,,且在上是连续不断的曲线,所以函数在区间内有零点,因此,命题是假命题.因此只有为真命题故选A考点:复合命题的真假【方法点晴】本题考查命题的真假判断,命题的“或”、“且”及“非”的运算性质,同时也考查两圆的位置关系和函数零点存在定理,属于综合题.由于点满足,因此在以为直径的圆上,又点在圆上,因此为两圆的交点,利用圆心距介于两圆半径差与和之间,求出的范围.函数是单调函数,利用零点存在性定理判断出两端点异号,因此存在零点.8 【答案】C9 【答案】A【解析】考点:斜二测画法10【答案】A【解析】解:,又cosC=,=,整理可得:b2=c2,解得:b=c即三角形一定为等腰三角形故选:A11【答案】A【解析】试题分析:利用余弦定理求出正方形面积;利用三角形知识得出四个等腰三角形面积;故八边形面积.故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式求出个三角形的面积;接下来利用余弦定理可求出正方形的边长的平方,进而得到正方形的面积,最后得到答案.12【答案】D【解析】解:根据奇函数的图象关于原点对称,作出函数的图象,如图 则不等式xf(x)0的解为:或解得:x(,2)(1,0)(0,1)(2,+)故选:D二、填空题13【答案】24 【解析】解:由题意,B与C必须相邻,利用捆绑法,可得=48种方法,因为A必须在D的前面完成,所以完成加工该产品的不同工艺的排列顺序有482=24种,故答案为:24【点评】本题考查计数原理的应用,考查学生的计算能力,比较基础14【答案】a=,b= 【解析】解:由5,10,17,ab,37知,ab=26,由3,8,a+b,24,35知,a+b=15,解得,a=,b=;故答案为:,【点评】本题考查了数列的性质的判断与归纳法的应用15【答案】5 【解析】解:P(1,4)为抛物线C:y2=mx上一点,即有42=m,即m=16,抛物线的方程为y2=16x,焦点为(4,0),即有|PF|=5故答案为:5【点评】本题考查抛物线的方程和性质,考查两点的距离公式,及运算能力,属于基础题16【答案】 【解析】解:由题意图形折叠为三棱锥,底面为EFC,高为AC,所以三棱柱的体积:112=,故答案为:【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力17【答案】3 【解析】解:把x=0代入2x+3y+6=0可得y=2,把y=0代入2x+3y+6=0可得x=3,直线与坐标轴的交点为(0,2)和(3,0),故三角形的面积S=23=3,故答案为:3【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题18【答案】8或18【解析】【分析】根据直线与圆相切的性质可知圆心直线的距离为半径,先把圆的方程整理的标准方程求得圆心和半径,在利用点到直线的距离求得圆心到直线的距离为半径,求得答案【解答】解:整理圆的方程为(x1)2+y2=1故圆的圆心为(1,0),半径为1直线与圆相切圆心到直线的距离为半径即=1,求得m=8或18故答案为:8或18三、解答题19【答案】【解析】设f(x)=x2ax+2当x,则t=,对称轴m=(0,且开口向下;时,t取得最小值,此时x=9税率t的最小值为【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识考查的知识全面而到位!20【答案】(1);(2)【解析】试题分析:(1)已知递推公式,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得,变形形式为;(2)由(1)可知,这是数列的后项与前项的差,要求通项公式可用累加法,即由求得试题解析:(1),又,.考点:数列的递推公式,等比数列的通项公式,等比数列的前项和累加法求通项公式21【答案】【解析】(1)证明:AEA1B1,A1B1AB,AEAB,又AA1AB,AA1AE=A,AB面A1ACC1,又AC面A1ACC1,ABAC,以A为原点建立如图所示的空间直角坐标系Axyz,则有A(0,0,0),E(0,1,),F(,0),A1(0,0,1),B1(1,0,1),设D(x,y,z),且,即(x,y,z1)=(1,0,0),则 D(,0,1),所以=(,1),=(0,1,),=0,所以DFAE; (2)结论:存在一点D,使得平面DEF与平面ABC所成锐二面角的余弦值为理由如下:设面DEF的法向量为=(x,y,z),则,=(,),=(,1),即,令z=2(1),则=(3,1+2,2(1)由题可知面ABC的法向量=(0,0,1),平面DEF与平面ABC所成锐二面角的余弦值为,|cos,|=,即=,解得或(舍),所以当D为A1B1中点时满足要求【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题22【答案】 【解析】解:(1)证明:Sn=nann(n1)Sn+1=(n+1)an+1(n+1)nan+1=Sn+1Sn=(n+1)an+1nan2nnan+1nan2n=0an+1an=2,an是以首项为a1=1,公差为2的等差数列 由等差数列的通项公式可知:an=1+(n1)2=2n1,数列an通项公式an=2n1;(2)证明:由(1)可得,=(3),=,两式相减得=,=,=,=,nN*,2n1, 23【答案】 【解析】解:()函数f(x)=lnx的反函数为g(x)g(x)=ex,f(x)=ln(x),则函数的导数g(x)=ex,f(x)=,(x0),设直线m与g(x)相切与点(x1,),则切线斜率k2=,则x1=1,k2=e,设直线l与f(x)相切与点(x2,ln(x2),则切线斜率k1=,则x2=e,k1=,故k2k1=e=1,则lm()不妨设ab,PR=g()=0,PR,PQ=g()=,令(x)=2xex+ex,则(x)=2exex0,则(x)在(0,+)上为减函数,故(x)(0)=0,取x=,则ab+0,PQ,=1令t(x)=1+,则t(x)=0,则t(x)在(0,+)上单调递增,故t(x)t(0)=0,取x=ab,则1+0,RQ,综上,PQR,【点评】本题主要考查导数的几何意义的应用以及利用作差法比较大小,考查学生的运算和推理能力,综合性较强,难度较大24【答案】 【解析】解:(1)证明:f(x)=m(emx1)+2x若m0,则当x(,0)时,emx10,f(x)0;当x(0,+)时,emx10,f(x)0若m0,则当x(,0)时,emx10,f(x)0;当x(0,+)时,emx10,f(x)0所以,f(x)在(,0)时单调递减,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论