嵩县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第1页
嵩县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第2页
嵩县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第3页
嵩县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第4页
嵩县实验中学2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷嵩县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 在等差数列中,首项公差,若,则 A、B、 C、D、2 直线x+y1=0与2x+2y+3=0的距离是( )ABCD3 九章算术之后,人们进一步用等差数列求和公式来解决更多的问题,张丘建算经卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布ABCD4 已知i是虚数单位,则复数等于( )A +iB +iCiDi5 设双曲线焦点在y轴上,两条渐近线为,则该双曲线离心率e=( )A5BCD6 若复数z满足=i,其中i为虚数单位,则z=( )A1iB1+iC1iD1+i7 棱台的两底面面积为、,中截面(过各棱中点的面积)面积为,那么( )A B C D8 若函数在上单调递增,则实数的取值范围为( )A BC. D9 在ABC中,内角A,B,C所对的边分别为a,b,c,已知a=3,A=60,则满足条件的三角形个数为( )A0B1C2D以上都不对10下列说法正确的是( )A类比推理是由特殊到一般的推理B演绎推理是特殊到一般的推理C归纳推理是个别到一般的推理D合情推理可以作为证明的步骤11设分别是中,所对边的边长,则直线与的位置关系是( )A平行 B 重合 C 垂直 D相交但不垂直12函数y=ecosx(x)的大致图象为( )ABCD二、填空题13抛物线y2=8x上一点P到焦点的距离为10,则P点的横坐标为14【南通中学2018届高三10月月考】定义在上的函数满足,为的导函数,且对恒成立,则的取值范围是_.15已知f(x),g(x)都是定义在R上的函数,且满足以下条件:f(x)=axg(x)(a0,a1);g(x)0;f(x)g(x)f(x)g(x);若,则a=16已知数列中,函数在处取得极值,则_.17已知面积为的ABC中,A=若点D为BC边上的一点,且满足=,则当AD取最小时,BD的长为18由曲线y=2x2,直线y=4x2,直线x=1围成的封闭图形的面积为三、解答题19已知矩阵M=的一个属于特质值3的特征向量=,正方形区域OABC在矩阵N应对的变换作用下得到矩形区域OABC,如图所示(1)求矩阵M;(2)求矩阵N及矩阵(MN)1 20(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问卷调查,得到了如下的列联表:患心肺疾病患心肺疾病合计男20525女101525合计302050(1)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量,判断心肺疾病与性别是否有关?下面的临界值表供参考:(参考公式:,其中)21已知函数f(x)=,求不等式f(x)4的解集22(本小题满分10分)已知函数f(x)|xa|xb|,(a0,b0)(1)求f(x)的最小值,并求取最小值时x的范围;(2)若f(x)的最小值为2,求证:f(x).23已知f(x)=|x|+x|()关于x的不等式f(x)a23a恒成立,求实数a的取值范围;()若f(m)+f(n)=4,且mn,求m+n的取值范围 24(本小题满分12分)1111已知函数(1)若,求函数的极值和单调区间;(2)若在区间上至少存在一点,使得成立,求实数的取值范围嵩县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】, 2 【答案】A【解析】解:直线x+y1=0与2x+2y+3=0的距离,就是直线2x+2y2=0与2x+2y+3=0的距离是: =故选:A3 【答案】D【解析】解:设从第2天起每天比前一天多织d尺布m则由题意知,解得d=故选:D【点评】本题考查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的通项公式的求解4 【答案】A【解析】解:复数=,故选:A【点评】本题考查了复数的运算法则,属于基础题5 【答案】C【解析】解:双曲线焦点在y轴上,故两条渐近线为 y=x,又已知渐近线为, =,b=2a,故双曲线离心率e=,故选C【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键6 【答案】A【解析】解: =i,则=i(1i)=1+i,可得z=1i故选:A7 【答案】A【解析】试题分析:不妨设棱台为三棱台,设棱台的高为上部三棱锥的高为,根据相似比的性质可得:,解得,故选A考点:棱台的结构特征8 【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式. 9 【答案】B【解析】解:a=3,A=60,由正弦定理可得:sinB=1,B=90,即满足条件的三角形个数为1个故选:B【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题10【答案】C【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,故选C【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题11【答案】C【解析】试题分析:由直线与,则,所以两直线是垂直的,故选C. 1考点:两条直线的位置关系.12【答案】C【解析】解:函数f(x)=ecosx(x,)f(x)=ecos(x)=ecosx=f(x),函数是偶函数,排除B、D选项令t=cosx,则t=cosx当0x时递减,而y=et单调递增,由复合函数的单调性知函数y=ecosx在(0,)递减,所以C选项符合,故选:C【点评】本题考查函数的图象的判断,考查同学们对函数基础知识的把握程度以及数形结合的思维能力二、填空题13【答案】8 【解析】解:抛物线y2=8x=2px,p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=x+=x+2=10,x=8,故答案为:8【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解14【答案】【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的。根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。15【答案】 【解析】解:由得,所以又由f(x)g(x)f(x)g(x),即f(x)g(x)f(x)g(x)0,也就是,说明函数是减函数,即,故故答案为【点评】本题考查了应用导数判断函数的单调性,做题时应认真观察 16【答案】【解析】考点:1、利用导数求函数极值;2、根据数列的递推公式求通项公式.【方法点晴】本题主要考查等比数列的定义以及已知数列的递推公式求通项,属于中档题.由数列的递推公式求通项常用的方法有:累加法、累乘法、构造法,形如的递推数列求通项往往用构造法,利用待定系数法构造成的形式,再根据等比数例求出的通项,进而得出的通项公式.17【答案】 【解析】解:AD取最小时即ADBC时,根据题意建立如图的平面直角坐标系,根据题意,设A(0,y),C(2x,0),B(x,0)(其中x0),则=(2x,y),=(x,y),ABC的面积为,=18,=cos=9,2x2+y2=9,ADBC,S=xy=3,由得:x=,故答案为:【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识18【答案】 【解析】解:由方程组 解得,x=1,y=2故A(1,2)如图,故所求图形的面积为S=11(2x2)dx11(4x2)dx=(4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题三、解答题19【答案】 【解析】解:(1)根据题意,可得,故,解得所以矩阵M=;(2)矩阵N所对应的变换为,故N=,MN=det(MN)=,=【点评】本题考查矩阵与变换、矩阵的特征值、特征向量等基础知识,考查运算求解能力,考查函数与方程的思想 20【答案】【解析】【命题意图】本题综合考查统计中的相关分析、概率中的古典概型,突出了统计和概率知识的交汇,对归纳、分析推理的能力有一定要求,属于中等难度.21【答案】 【解析】解:函数f(x)=,不等式f(x)4,当x1时,2x+44,解得1x0;当x1时,x+14解得3x1综上x(3,0)不等式的解集为:(3,0)22【答案】【解析】解:(1)由|xa|xb|(xa)(xb)|ab|得,当且仅当(xa)(xb)0,即bxa时,f(x)取得最小值,当xb,a时,f(x)min|ab|ab. (2)证明:由(1)知ab2,()2ab22(ab)4,2,f(x)ab2,即f(x).23【答案】 【解析】解:()关于x的不等式f(x)a23a恒成立,即|x|+x|a23a恒成立由于f(x)=|x|+x|=,故f(x)的最小值为2,2a23a,求得1a2()由于f(x)的最大值为2,f(m)2,f(n)2,若f(m)+f(n)=4,mn,m+n5【点评】本题主要考查分段函数的应用,求函数的最值,函数的恒成立问题,属于中档题24【答案】(1)极小值为,单调递增区间为,单调递减区间为;(2)【解析】试题分析:(1)由令再利用导数工具可得:极小值和单调区间;(2)求导并令,再将命题转化为在区间上的最小值小于当,即时,恒成立,即在区间上单调递减,再利用导数工具对的取值进行分类讨论.111若,则对成立,所以在区间上单调递减,则在区间上的最小值为,显然,在区间的最小值小于0不成立若,即时,则有-0+极小值所以在区间上的最小值为,由,得,解得,即,综上,由可知,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论