兴义市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
兴义市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
兴义市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
兴义市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
兴义市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

兴义市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 sin(510)=( )ABCD2 如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(,),AOC=,若|BC|=1,则cos2sincos的值为( )ABCD3 函数f(x)=()x29的单调递减区间为( )A(,0)B(0,+)C(9,+)D(,9)4 已知直线与圆交于两点,为直线上任意一点,则的面积为( )A B. C. D. 5 等比数列an中,a3,a9是方程3x211x+9=0的两个根,则a6=( )A3BCD以上皆非6 二项式的展开式中项的系数为10,则( )A5 B6 C8 D10【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力7 方程(x24)2+(y24)2=0表示的图形是( )A两个点B四个点C两条直线D四条直线8 已知直线l1:(3+m)x+4y=53m,l2:2x+(5+m)y=8平行,则实数m的值为( )A7B1C1或7D9 已知向量=(1,),=(,x)共线,则实数x的值为( )A1BC tan35Dtan3510如图,程序框图的运算结果为( )A6B24C20D12011一个几何体的三视图如图所示,如果该几何体的侧面面积为12,则该几何体的体积是( )A4B12C16D4812在曲线y=x2上切线倾斜角为的点是( )A(0,0)B(2,4)C(,)D(,)二、填空题13函数图象上不同两点处的切线的斜率分别是,规定(为线段AB的长度)叫做曲线在点A与点B之间的“弯曲度”,给出以下命题:函数图象上两点A与B的横坐标分别为1和2,则;存在这样的函数,图象上任意两点之间的“弯曲度”为常数;设点A,B是抛物线上不同的两点,则;设曲线(e是自然对数的底数)上不同两点,若恒成立,则实数t的取值范围是.其中真命题的序号为_.(将所有真命题的序号都填上)14等差数列的前项和为,若,则等于_.15已知正整数的3次幂有如下分解规律:;若的分解中最小的数为,则的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.16若命题“xR,x22x+m0”是假命题,则m的取值范围是17满足关系式2,3A1,2,3,4的集合A的个数是18已知函数.表示中的最小值,若函数恰有三个零点,则实数的取值范围是 三、解答题19.已知定义域为R的函数f(x)=是奇函数(1)求a的值;(2)判断f(x)在(,+)上的单调性(直接写出答案,不用证明);(3)若对于任意tR,不等式f(t22t)+f(2t2k)0恒成立,求k的取值范围20设函数f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12(1)求a,b的值(2)当x1,2时,求f(x)的最大值(3)m为何值时,函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点 21已知函数f(x)=ax(a0且a1)的图象经过点(2,)(1)求a的值;(2)比较f(2)与f(b2+2)的大小;(3)求函数f(x)=a(x0)的值域22已知Sn为等差数列an的前n项和,且a4=7,S4=16(1)求数列an的通项公式;(2)设bn=,求数列bn的前n项和Tn23设函数f(x)=lnxax2bx(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2x3)其图象上任意一点P(x0,y0)处切线的斜率k恒成立,求实数a的取值范围;(3)当a=0,b=1时,方程f(x)=mx在区间1,e2内有唯一实数解,求实数m的取值范围 24已知定义在的一次函数为单调增函数,且值域为(1)求的解析式;(2)求函数的解析式并确定其定义域兴义市民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:sin(510)=sin(150)=sin150=sin30=,故选:C2 【答案】 A【解析】解:|BC|=1,点B的坐标为(,),故|OB|=1,BOC为等边三角形,BOC=,又AOC=,AOB=,cos()=,sin()=,sin()=cos=cos()=coscos()+sinsin() =+=,sin=sin()=sincos()cossin()=cos2sincos=(2cos21)sin=cossin=,故选:A【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题3 【答案】B【解析】解:原函数是由t=x2与y=()t9复合而成,t=x2在(,0)上是减函数,在(0,+)为增函数;又y=()t9其定义域上为减函数,f(x)=()x29在(,0)上是增函数,在(0,+)为减函数,函数ff(x)=()x29的单调递减区间是(0,+)故选:B【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键4 【答案】 C 【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,两平行直线之间的距离为,的面积为,选C5 【答案】C【解析】解:a3,a9是方程3x211x+9=0的两个根,a3a9=3,又数列an是等比数列,则a62=a3a9=3,即a6=故选C6 【答案】B【解析】因为的展开式中项系数是,所以,解得,故选A7 【答案】B【解析】解:方程(x24)2+(y24)2=0则x24=0并且y24=0,即,解得:,得到4个点故选:B【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力8 【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=53m,l2:2x+(5+m)y=8,l1与l2平行所以,解得m=7故选:A【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力9 【答案】B【解析】解:向量=(1,),=(,x)共线,x=,故选:B【点评】本题考查了向量的共线的条件和三角函数的化简,属于基础题10【答案】 B【解析】解:循环体中S=Sn可知程序的功能是:计算并输出循环变量n的累乘值,循环变量n的初值为1,终值为4,累乘器S的初值为1,故输出S=1234=24,故选:B【点评】本题考查的知识点是程序框图,其中根据已知分析出程序的功能是解答的关键11【答案】B【解析】解:由三视图可知几何体是底面半径为2的圆柱,几何体的侧面积为22h=12,解得h=3,几何体的体积V=223=12故选B【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题12【答案】D【解析】解:y=2x,设切点为(a,a2)y=2a,得切线的斜率为2a,所以2a=tan45=1,a=,在曲线y=x2上切线倾斜角为的点是(,)故选D【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力属于基础题二、填空题13【答案】【解析】试题分析:错:对:如;对;错;,因为恒成立,故.故答案为.111考点:1、利用导数求曲线的切线斜率;2、两点间的距离公式、最值问题、不等式恒成立问题.【方法点晴】本题通过新定义“弯曲度”对多个命题真假的判断考查利用导数求曲线的切线斜率、两点间的距离公式、最值问题、不等式恒成立问题以及及数学化归思想,属于难题.该题型往往出现在在填空题最后两题,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱更不能因贪快而审题不清,其次先从最有把握的命题入手,最后集中力量攻坚最不好理解的命题.14【答案】【解析】试题分析:由题意得,根据等差数列的性质,可得,由等差数列的求和考点:等差数列的性质和等差数列的和15【答案】10【解析】的分解规律恰好为数列1,3,5,7,9,中若干连续项之和,为连续两项和,为接下来三项和,故的首个数为.的分解中最小的数为91,解得.16【答案】m1 【解析】解:若命题“xR,x22x+m0”是假命题,则命题“xR,x22x+m0”是真命题,即判别式=44m0,解得m1,故答案为:m117【答案】4 【解析】解:由题意知,满足关系式2,3A1,2,3,4的集合A有:2,3,2,3,1,2,3,4,2,3,1,4,故共有4个,故答案为:418【答案】【解析】试题分析:,因为,所以要使恰有三个零点,须满足,解得考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.三、解答题19【答案】 【解析】解:(1)因为f(x)为R上的奇函数所以f(0)=0即=0,a=1 (2)f(x)=1+,在(,+)上单调递减(3)f(t22t)+f(2t2k)0f(t22t)f(2t2k)=f(2t2+k),又f(x)=在(,+)上单调递减,t22t2t2+k,即3t22tk0恒成立,=4+12k0,k(利用分离参数也可)20【答案】 【解析】解:(1)f(x)=lg(axbx),且f(1)=lg2,f(2)=lg12,ab=2,a2b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x2x),当x1,2时,4x2x2,12,故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=ax的图象与h(x)=bxm的图象恒有两个交点则4x2x=m有两个解,令t=2x,则t0,则t2t=m有两个正解;则,解得:m(,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键21【答案】 【解析】解:(1)f(x)=ax(a0且a1)的图象经过点(2,),a2=,a=(2)f(x)=()x在R上单调递减,又2b2+2,f(2)f(b2+2),(3)x0,x22x1,()1=30f(x)(0,322【答案】 【解析】解:(1)设等差数列an的公差为d,依题意得(2分)解得:a1=1,d=2an=2n1(2)由得(7分)(11分)(12分)【点评】本题考查等差数列的通项公式的求法及数列的求和,突出考查裂项法求和的应用,属于中档题23【答案】 【解析】解:(1)依题意,知f(x)的定义域为(0,+)当a=2,b=1时,f(x)=lnxx2x,f(x)=2x1=令f(x)=0,解得x=当0x时,f(x)0,此时f(x)单调递增;当x时,f(x)0,此时f(x)单调递减所以函数f(x)的单调增区间(0,),函数f(x)的单调减区间(,+)(2)F(x)=lnx+,x2,3,所以k=F(x0)=,在x02,3上恒成立,所以a(x02+x0)max,x02,3当x0=2时,x02+x0取得最大值0所以a0(3)当a=0,b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论