平邑县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
平邑县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
平邑县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
平邑县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
平邑县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平邑县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A4x+2y=5B4x2y=5Cx+2y=5Dx2y=52 若集合A=x|2x1,B=x|0x2,则集合AB=( )Ax|1x1Bx|2x1Cx|2x2Dx|0x13 已知函数f(x)=x(1+a|x|)设关于x的不等式f(x+a)f(x)的解集为A,若,则实数a的取值范围是( )ABCD4 lgx,lgy,lgz成等差数列是由y2=zx成立的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件5 如图,一个底面半径为R的圆柱被与其底面所成角是30的平面所截,截面是一个椭圆,则该椭圆的离心率是( )ABCD6 已知直线与圆交于两点,为直线上任意一点,则的面积为( )A B. C. D. 7 已知a0,实数x,y满足:,若z=2x+y的最小值为1,则a=( )A2B1CD8 阅读右图所示的程序框图,若,则输出的的值等于( )A28 B36 C45 D1209 下面的结构图,总经理的直接下属是( )A总工程师和专家办公室B开发部C总工程师、专家办公室和开发部D总工程师、专家办公室和所有七个部10若函数在上单调递增,则实数的取值范围为( )A BC. D11设函数f(x)=,f(2)+f(log210)=( )A11B8C5D212已知ABC的周长为20,且顶点B (0,4),C (0,4),则顶点A的轨迹方程是( )A(x0) B(x0)C(x0) D(x0)二、填空题13已知随机变量N(2,2),若P(4)=0.4,则P(0)=14的展开式中,常数项为_(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.15设函数则_;若,则的大小关系是_16已知函数,且,则,的大小关系是 17过原点的直线l与函数y=的图象交于B,C两点,A为抛物线x2=8y的焦点,则|+|=18向量=(1,2,2),=(3,x,y),且,则xy=三、解答题19(本小题满分10分)选修4-1:几何证明选讲如图,四边形外接于圆,是圆周角的角平分线,过点的切线与延长线交于点,交于点(1)求证:;(2)若是圆的直径,求长20【南师附中2017届高三模拟二】已知函数(1)试讨论的单调性;(2)证明:对于正数,存在正数,使得当时,有;(3)设(1)中的的最大值为,求得最大值21(本小题满分12分)数列满足:,且.(1)求数列的通项公式;(2)求数列的前项和.22(本小题满分12分)在多面体中,四边形与均为正方形,平面,平面,且(1)求证:平面平面;(2)求二面角的大小的余弦值 23(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(1)写出曲线的参数方程,直线的普通方程;(2)求曲线上任意一点到直线的距离的最大值.24已知函数f(x)=log2(m+)(mR,且m0)(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+)上单调递增,求m的取值范围 平邑县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】B【解析】解:线段AB的中点为,kAB=,垂直平分线的斜率 k=2,线段AB的垂直平分线的方程是 y=2(x2)4x2y5=0,故选B【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法2 【答案】D【解析】解:AB=x|2x1x|0x2=x|0x1故选D3 【答案】 A【解析】解:取a=时,f(x)=x|x|+x,f(x+a)f(x),(x)|x|+1x|x|,(1)x0时,解得x0;(2)0x时,解得0;(3)x时,解得,综上知,a=时,A=(,),符合题意,排除B、D;取a=1时,f(x)=x|x|+x,f(x+a)f(x),(x+1)|x+1|+1x|x|,(1)x1时,解得x0,矛盾;(2)1x0,解得x0,矛盾;(3)x0时,解得x1,矛盾;综上,a=1,A=,不合题意,排除C,故选A【点评】本题考查函数的单调性、二次函数的性质、不等式等知识,考查数形结合思想、分类讨论思想,考查学生分析解决问题的能力,注意排除法在解决选择题中的应用4 【答案】A【解析】解:lgx,lgy,lgz成等差数列,2lgy=lgxlgz,即y2=zx,充分性成立,因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,故选:A【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题5 【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为: =,a2=b2+c2,c=,椭圆的离心率为:e=故选:A【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力6 【答案】 C 【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心到直线的距离,两平行直线之间的距离为,的面积为,选C7 【答案】 C【解析】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=2x+z,平移直线y=2x+z,由图象可知当直线y=2x+z经过点C时,直线y=2x+z的截距最小,此时z最小即2x+y=1,由,解得,即C(1,1),点C也在直线y=a(x3)上,1=2a,解得a=故选:C【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法8 【答案】C 【解析】解析:本题考查程序框图中的循环结构,当时,选C9 【答案】C【解析】解:按照结构图的表示一目了然,就是总工程师、专家办公室和开发部读结构图的顺序是按照从上到下,从左到右的顺序故选C【点评】本题是一个已知结构图,通过解读各部分从而得到系统具有的功能,在解读时,要从大的部分读起,一般而言,是从左到右,从上到下的过程解读10【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式. 11【答案】B【解析】解:f(x)=,f(2)=1+log24=1+2=3,=5,f(2)+f(log210)=3+5=8故选:B【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用12【答案】B【解析】解:ABC的周长为20,顶点B (0,4),C (0,4),BC=8,AB+AC=208=12,128点A到两个定点的距离之和等于定值,点A的轨迹是椭圆,a=6,c=4b2=20,椭圆的方程是故选B【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点二、填空题13【答案】0.6 【解析】解:随机变量服从正态分布N(2,2),曲线关于x=2对称,P(0)=P(4)=1P(4)=0.6,故答案为:0.6【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题14【答案】【解析】的展开式通项为,所以当时,常数项为.15【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数【试题解析】,因为,所以又若,结合图像知:所以:。故答案为:,16【答案】111.Com【解析】考点:不等式,比较大小【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等17【答案】4 【解析】解:由题意可得点B和点C关于原点对称,|+|=2|,再根据A为抛物线x2=8y的焦点,可得A(0,2),2|=4,故答案为:4【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用|+|=2|是解题的关键18【答案】12 【解析】解:向量=(1,2,2),=(3,x,y),且,=,解得x=6,y=6,xy=66=12故答案为:12【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目三、解答题19【答案】【解析】【命题意图】本题主要考查圆周角定理、弦切角定理、三角形相似的判断与性质等基础知识,意在考查逻辑推证能力、转化能力、识图能力,则,在中,在中,所以20【答案】(1)证明过程如解析;(2)对于正数,存在正数,使得当时,有;(3)的最大值为【解析】【试题分析】(1)先对函数进行求导,再对导函数的值的符号进行分析,进而做出判断;(2)先求出函数值,进而分和两种情形进行分析讨论,推断出存在使得,从而证得当时,有成立;(3)借助(2)的结论在上有最小值为,然后分两种情形探求的解析表达式和最大值。证明:(1)由于,且,故在上单调递减,在上单调递增(3)由(2)知在上的最小值为当时,则是方程满足的实根,即满足的实根,所以又在上单调递增,故当时,由于,故此时,综上所述,的最大值为21【答案】(1);(2)【解析】试题分析:(1)已知递推公式,求通项公式,一般把它进行变形构造出一个等比数列,由等比数列的通项公式可得,变形形式为;(2)由(1)可知,这是数列的后项与前项的差,要求通项公式可用累加法,即由求得试题解析:(1),又,.考点:数列的递推公式,等比数列的通项公式,等比数列的前项和累加法求通项公式22【答案】【解析】【命题意图】本题主要考查空间直线与平面间的垂直关系、空间向量、二面角等基础知识,意在考查空间想象能力、逻辑推理能力,以及转化的思想、方程思想平面,平面平面5分23【答案】(1)参数方程为,;(2).【解析】试题分析:(1)先将曲线的极坐标方程转化为直角坐标系下的方程,可得,利用圆的参数方程写出结果,将直线的参数方程消去参数变为直线的普通方程;(2)利用参数方程写出曲线上任一点坐标,用点到直线的距离公式,将其转化为关于的式子,利用三角函数性质可得距离最值.试题解析:(1)曲线的普通方程为,所以参数方程为,直线的普通方程为.(2)曲线上任意一点到直线的距离为,所以曲线上任意一点到直线的距离的最大值为.考点:1.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论