大宁县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第1页
大宁县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第2页
大宁县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第3页
大宁县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第4页
大宁县高中2018-2019学年上学期高三数学期末模拟试卷含答案_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大宁县高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 函数f(x)=ax2+bx与f(x)=logx(ab0,|a|b|)在同一直角坐标系中的图象可能是( )ABCD2 自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到原点的长,则点轨迹方程为( )ABCD【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力3 数列1,4,7,10,13,的通项公式an为( )A2n1B3n+2C(1)n+1(3n2)D(1)n+13n24 已知函数,则要得到其导函数的图象,只需将函数的图象( )A向右平移个单位 B向左平移个单位C. 向右平移个单位 D左平移个单位5 直线在平面外是指( )A直线与平面没有公共点B直线与平面相交C直线与平面平行D直线与平面最多只有一个公共点6 “a=2”是“直线x+y=0与直线2xay=0互相垂直”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7 对“a,b,c是不全相等的正数”,给出两个判断:(ab)2+(bc)2+(ca)20;ab,bc,ca不能同时成立,下列说法正确的是( )A对错B错对C对对D错错8 lgx,lgy,lgz成等差数列是由y2=zx成立的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件9 设是等差数列的前项和,若,则( )A1 B2 C3 D410若命题p:x0R,sinx0=1;命题q:xR,x2+10,则下列结论正确的是( )Ap为假命题Bq为假命题Cpq为假命题Dpq真命题11半径R的半圆卷成一个圆锥,则它的体积为( )AR3BR3CR3DR312特称命题“xR,使x2+10”的否定可以写成( )A若xR,则x2+10BxR,x2+10CxR,x2+10DxR,x2+10二、填空题13等比数列an的前n项和Snk1k22n(k1,k2为常数),且a2,a3,a42成等差数列,则an_14=15已知点A的坐标为(1,0),点B是圆心为C的圆(x1)2+y2=16上一动点,线段AB的垂直平分线交BC与点M,则动点M的轨迹方程为 16设等差数列an的前n项和为Sn,若1a31,0a63,则S9的取值范围是17在ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB=1817已知函数f(x)是定义在R上的奇函数,且它的图象关于直线x=1对称三、解答题19在平面直角坐标系中,过点的直线与抛物线相交于点、两点,设,(1)求证:为定值;(2)是否存在平行于轴的定直线被以为直径的圆截得的弦长为定值?如果存在,求出该直线方程和弦长,如果不存在,说明理由20如图,四边形ABCD与AABB都是边长为a的正方形,点E是AA的中点,AA平面ABCD(1)求证:AC平面BDE;(2)求体积VAABCD与VEABD的比值21如图,ABCD是边长为3的正方形,DE平面ABCD,AFDE,DE=3AF,BE与平面ABCD所成角为60()求证:AC平面BDE;()求二面角FBED的余弦值;()设点M是线段BD上一个动点,试确定点M的位置,使得AM平面BEF,并证明你的结论22(本小题满分10分)选修4-1:几何证明选讲1111如图,点为圆上一点,为圆的切线,为圆的直径,.(1)若交圆于点,求的长;(2)若连接并延长交圆于两点,于,求的长.23已知函数f(x)=ax2+bx+c,满足f(1)=,且3a2c2b(1)求证:a0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1x2|的取值范围 24【海安县2018届高三上学期第一次学业质量测试】已知函数,其中,是自然对数的底数.(1)当时,求曲线在处的切线方程;(2)求函数的单调减区间;(3)若在恒成立,求的取值范围.大宁县高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】 D【解析】解:A、由图得f(x)=ax2+bx的对称轴x=0,则,不符合对数的底数范围,A不正确;B、由图得f(x)=ax2+bx的对称轴x=0,则,不符合对数的底数范围,B不正确;C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=logx在定义域上是增函数,C不正确;D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=logx在定义域上是减函数,D正确【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力2 【答案】D【解析】由切线性质知,所以,则由,得,化简得,即点的轨迹方程,故选D,3 【答案】C【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(1)n+1,绝对值为3n2,故通项公式an=(1)n+1(3n2)故选:C4 【答案】B 【解析】试题分析:函数,所以函数,所以将函数函数的图象上所有的点向左平移个单位长度得到,故选B. 考点:函数的图象变换.5 【答案】D【解析】解:根据直线在平面外是指:直线平行于平面或直线与平面相交,直线在平面外,则直线与平面最多只有一个公共点故选D6 【答案】C【解析】解:由直线x+y=0与直线2xay=0互相垂直,得:(1)=1,解得:a=2,“a=2”是“直线x+y=0与直线2xay=0互相垂直”的充要条件,故选:C【点评】本题考察了直线互相垂直的性质,考察充分必要条件,是一道基础题7 【答案】A【解析】解:由:“a,b,c是不全相等的正数”得:(ab)2+(bc)2+(ca)2中至少有一个不为0,其它两个式子大于0,故正确;但是:若a=1,b=2,c=3,则中ab,bc,ca能同时成立,故错故选A【点评】本小题主要考查不等关系与不等式等基础知识,考查运算求解能力,考查逻辑思维能力属于基础题8 【答案】A【解析】解:lgx,lgy,lgz成等差数列,2lgy=lgxlgz,即y2=zx,充分性成立,因为y2=zx,但是x,z可能同时为负数,所以必要性不成立,故选:A【点评】本题主要考查了等差数列和函数的基本性质,以及充分必要行得证明,是高考的常考类型,同学们要加强练习,属于基础题9 【答案】A【解析】1111试题分析:故选A111考点:等差数列的前项和10【答案】A【解析】解:时,sinx0=1;x0R,sinx0=1;命题p是真命题;由x2+10得x21,显然不成立;命题q是假命题;p为假命题,q为真命题,pq为真命题,pq为假命题;A正确故选A【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对R满足x20,命题p,pq,pq的真假和命题p,q真假的关系11【答案】A【解析】解:2r=R,所以r=,则h=,所以V=故选A12【答案】D【解析】解:命题“xR,使x2+10”是特称命题否定命题为:xR,都有x2+10故选D二、填空题13【答案】【解析】当n1时,a1S1k12k2,当n2时,anSnSn1(k1k22n)(k1k22n1)k22n1,k12k2k220,即k1k20,又a2,a3,a42成等差数列2a3a2a42,即8k22k28k22.由联立得k11,k21,an2n1.答案:2n114【答案】2 【解析】解: =2+lg1002=2+22=2,故答案为:2【点评】本题考查了对数的运算性质,属于基础题15【答案】=1【解析】解:由题意得,圆心C(1,0),半径等于4,连接MA,则|MA|=|MB|,|MC|+|MA|=|MC|+|MB|=|BC|=4|AC|=2,故点M的轨迹是:以A、C为焦点的椭圆,2a=4,即有a=2,c=1,b=,椭圆的方程为=1故答案为: =1【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题16【答案】(3,21) 【解析】解:数列an是等差数列,S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=633a33,06a618,两式相加即得3S921S9的取值范围是(3,21)故答案为:(3,21)【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题17【答案】 【解析】解:在ABC中,6a=4b=3cb=,c=2a,由余弦定理可得cosB=故答案为:【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题18【答案】 【解析】解:f(x)=axg(x)(a0且a1),=ax,又f(x)g(x)f(x)g(x),()=0,=ax是增函数,a1,+=a1+a1=,解得a=或a=2综上得a=2数列为2n数列的前n项和大于62,2+22+23+2n=2n+1262,即2n+164=26,n+16,解得n5n的最小值为6故答案为:6【点评】本题考查等比数列的前n项和公式的应用,巧妙地把指数函数、导数、数列融合在一起,是一道好题三、解答题19【答案】(1)证明见解析;(2)弦长为定值,直线方程为.【解析】(2)根据两点间距离公式、点到直线距离公式及勾股定理可求得弦长为 ,进而得时为定值.试题解析:(1)设直线的方程为,由得,因此有为定值111(2)设存在直线:满足条件,则的中点,因此以为直径圆的半径,点到直线的距离,所以所截弦长为当,即时,弦长为定值2,这时直线方程为考点:1、直线与圆、直线与抛物线的位置关系的性质;2、韦达定理、点到直线距离公式及定值问题.20【答案】 【解析】(1)证明:设BD交AC于M,连接MEABCD为正方形,M为AC中点,又E为AA的中点,ME为AAC的中位线,MEAC又ME平面BDE,AC平面BDE,AC平面BDE(2)解:VEABD=VAABCDVAABCD:VEABD=4:121【答案】【解析】【分析】(I)由已知中DE平面ABCD,ABCD是边长为3的正方形,我们可得DEAC,ACBD,结合线面垂直的判定定理可得AC平面BDE;()以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF和平面BDE的法向量,代入向量夹角公式,即可求出二面角FBED的余弦值;()由已知中M是线段BD上一个动点,设M(t,t,0)根据AM平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置【解答】证明:()因为DE平面ABCD,所以DEAC因为ABCD是正方形,所以ACBD,从而AC平面BDE(4分)解:()因为DA,DC,DE两两垂直,所以建立空间直角坐标系Dxyz如图所示因为BE与平面ABCD所成角为600,即DBE=60,所以由AD=3,可知,则A(3,0,0),B(3,3,0),C(0,3,0),所以,设平面BEF的法向量为=(x,y,z),则,即令,则=因为AC平面BDE,所以为平面BDE的法向量,所以cos因为二面角为锐角,所以二面角FBED的余弦值为(8分)()点M是线段BD上一个动点,设M(t,t,0)则因为AM平面BEF,所以=0,即4(t3)+2t=0,解得t=2此时,点M坐标为(2,2,0),即当时,AM平面BEF(12分)22【答案】(1);(2).【解析】试题分析:(1)由切线的性质可知,由相似三角形性质知,可得;(2)由切割线定理可得,求出,再由,求出的值. 1试题解析:(1)因为是圆的切线,是圆的直径,所以,所以,设,又因为,所以,所以,解得.考点:1.圆的切线的性质;2.切割线定理;3.相似三角形性质.23【答案】【解析】解:(1)f(1)=a+b+c=,3a+2b+2c=0又3a2c2b,故3a0,2b0,从而a0,b0,又2c=3a2b及3a2c2b知3a3a2b2ba0,332,即3(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+ac=ac下面对c的正负情况进行讨论:当c0时,a0,f(0)=c0,f(1)=0所以函数f(x)在区间(0,1)内至少有一个零点;当c0时,a0,f(1)=0,f(2)=ac0所以函数f(x)在区间(1,2)内至少有一个零点;综合得函数f(x)在区间(0,2)内至少有一个零点;(3)x1,x2是函数f(x)的两个零点x1,x2是方程ax2+bx+c=0的两根故x1+x2=,x1x2=从而|x1x2|=3,|x1x2|【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化属于中档题24【答案】(1)(2)当时,无单调减区间;当时,的单调减区间是;当时,的单调减区间是.(3)【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然后借助导函数的值的符号与函数单调性之间的关系进行分类

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论