利辛县一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
利辛县一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
利辛县一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
利辛县一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
利辛县一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

利辛县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知A=4,2a1,a2,B=a5,1a,9,且AB=9,则a的值是( )Aa=3Ba=3Ca=3Da=5或a=32 在正方体中, 分别为的中点,则下列直线中与直线 相交 的是( ) A直线 B直线 C. 直线 D直线3 设集合A=x|2x4,B=2,1,2,4,则AB=( )A1,2B1,4C1,2D2,44 若函数f(x)=ax2+bx+1是定义在1a,2a上的偶函数,则该函数的最大值为( )A5B4C3D25 某几何体的三视图如图所示,则该几何体的表面积为( )A8+2B8+8C12+4D16+46 已知函数f(x)=31+|x|,则使得f(x)f(2x1)成立的x的取值范围是( )ABC(,)D7 已知角的终边经过点P(4,m),且sin=,则m等于( )A3B3CD38 在抛物线y2=2px(p0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( )Ax=1Bx=Cx=1Dx=9 与椭圆有公共焦点,且离心率的双曲线方程为( )ABCD10如果函数f(x)的图象关于原点对称,在区间上是减函数,且最小值为3,那么f(x)在区间上是( )A增函数且最小值为3B增函数且最大值为3C减函数且最小值为3D减函数且最大值为3 11在等差数列中,已知,则( )A12B24C36D4812点集(x,y)|(|x|1)2+y2=4表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )ABCD二、填空题13若log2(2m3)=0,则elnm1=14已知(1+x+x2)(x)n(nN+)的展开式中没有常数项,且2n8,则n=15已知x,y满足条件,则函数z=2x+y的最大值是16在等差数列中,公差为,前项和为,当且仅当时取得最大值,则的取值范围为_.17若函数f(x)=x22x(x2,4),则f(x)的最小值是18在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生两次的概率,则事件A在一次试验中发生的概率P的取值范围是三、解答题19已知椭圆C: +=1(ab0)与双曲线y2=1的离心率互为倒数,且直线xy2=0经过椭圆的右顶点()求椭圆C的标准方程;()设不过原点O的直线与椭圆C交于M、N两点,且直线OM、MN、ON的斜率依次成等比数列,求OMN面积的取值范围20已知=(sinx,cosx),=(sinx,sinx),设函数f(x)=(1)写出函数f(x)的周期,并求函数f(x)的单调递增区间;(2)求f(x)在区间,上的最大值和最小值21已知全集U=1,2,3,4,5,6,7,A=2,4,5,B=1,3,5,7(1)求AB;(2)求(UA)B;(3)求U(AB)22为了培养学生的安全意识,某中学举行了一次安全自救的知识竞赛活动,共有800 名学生参加了这次竞赛为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100 分)进行统计,得到如下的频率分布表,请你根据频率分布表解答下列问题:(1)求出频率分布表中、的值;(2)为鼓励更多的学生了解“安全自救”知识,成绩不低于85分的学生能获奖,请估计在参加的800名学生中大约有多少名学生获奖?(3)在上述统计数据的分析中,有一项指标计算的程序框图如图所示,则该程序的功能是什么?求输出的S的值 序号(i)分组(分数)组中值(Gi)频数(人数)频率(Fi)160,70)650.10270,80)7520380,90)850.20490,100)95合计50123在ABC中,内角A,B,C的对边分别为a、b、c,且bsinA=acosB(1)求B;(2)若b=2,求ABC面积的最大值24已知函数,(1)当时,求函数的单调区间;(2)若关于的不等式在上有解,求实数的取值范围利辛县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:A=4,2a1,a2,B=a5,1a,9,且AB=9,2a1=9或a2=9,当2a1=9时,a=5,AB=4,9,不符合题意;当a2=9时,a=3,若a=3,集合B违背互异性;a=3故选:B【点评】本题考查了交集及其运算,考查了集合中元素的特性,是基础题2 【答案】D【解析】试题分析:根据已满治安的概念可得直线都和直线为异面直线,和在同一个平面内,且这两条直线不平行;所以直线和相交,故选D.考点:异面直线的概念与判断.3 【答案】A【解析】解:集合A=x|2x4,B=2,1,2,4,则AB=1,2故选:A【点评】本题考查交集的运算法则的应用,是基础题4 【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在1a,2a上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x2,2,函数的最大值为:5故选:A【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力5 【答案】D【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA1=2,AB=2,高为,根据三视图得出侧棱长度为=2,该几何体的表面积为2(2+22+22)=16,故选:D【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题6 【答案】A【解析】解:函数f(x)=31+|x|为偶函数,当x0时,f(x)=31+x此时y=31+x为增函数,y=为减函数,当x0时,f(x)为增函数,则当x0时,f(x)为减函数,f(x)f(2x1),|x|2x1|,x2(2x1)2,解得:x,故选:A【点评】本题考查的知识点是分段函数的应用,函数的奇偶性,函数的单调性,难度中档7 【答案】B【解析】解:角的终边经过点P(4,m),且sin=,可得,(m0)解得m=3故选:B【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查8 【答案】C【解析】解:由题意可得抛物线y2=2px(p0)开口向右,焦点坐标(,0),准线方程x=,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4()=5,解之可得p=2故抛物线的准线方程为x=1故选:C【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题9 【答案】 A【解析】解:由于椭圆的标准方程为:则c2=132122=25则c=5又双曲线的离心率a=4,b=3又因为且椭圆的焦点在x轴上,双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m0,n0,mn),双曲线方程可设为mx2ny2=1(m0,n0,mn),由题目所给条件求出m,n即可10【答案】D【解析】解:由奇函数的性质可知,若奇函数f(x)在区间上是减函数,且最小值3,则那么f(x)在区间上为减函数,且有最大值为3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础11【答案】B【解析】,所以,故选B答案:B 12【答案】A【解析】解:点集(x,y)|(|x|1)2+y2=4表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示由图可得面积S=+=+2故选:A【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想二、填空题13【答案】 【解析】解:log2(2m3)=0,2m3=1,解得m=2,elnm1=eln2e=故答案为:【点评】本题考查指数式化简求值,是基础题,解题时要注意对数方程的合理运用14【答案】5【解析】二项式定理【专题】计算题【分析】要想使已知展开式中没有常数项,需(x)n(nN+)的展开式中无常数项、x1项、x2项,利用(x)n(nN+)的通项公式讨论即可【解答】解:设(x)n(nN+)的展开式的通项为Tr+1,则Tr+1=xnrx3r=xn4r,2n8,当n=2时,若r=0,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;当n=3时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n3;当n=4时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(nN+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n6;当n=7时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n7;当n=8时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;综上所述,n=5时,满足题意故答案为:5【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题15【答案】4 【解析】解:由约束条件作出可行域如图,化目标函数z=2x+y为y=2x+z,由图可知,当直线y=2x+z过点A(2,0)时,直线y=2x+z在y轴上的截距最大,即z最大,此时z=2(2)+0=4故答案为:4【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题16【答案】【解析】试题分析:当且仅当时,等差数列的前项和取得最大值,则,即,解得:.故本题正确答案为.考点:数列与不等式综合.17【答案】0 【解析】解:f(x)=x22x=(x1)21,其图象开口向上,对称抽为:x=1,所以函数f(x)在2,4上单调递增,所以f(x)的最小值为:f(2)=2222=0故答案为:0【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理18【答案】 【解析】解:由题设知C41p(1p)3C42p2(1p)2,解得p,0p1,故答案为:三、解答题19【答案】 【解析】解:()双曲线的离心率为,所以椭圆的离心率,又直线xy2=0经过椭圆的右顶点,右顶点为(2,0),即a=2,c=,b=1,椭圆方程为:()由题意可设直线的方程为:y=kx+m(k0,m0),M(x1,y1)、N(x2,y2)联立消去y并整理得:(1+4k2)x2+8kmx+4(m21)=0则,于是又直线OM、MN、ON的斜率依次成等比数列由m0得:又由=64k2m216(1+4k2)(m21)=16(4k2m2+1)0,得:0m22显然m21(否则:x1x2=0,则x1,x2中至少有一个为0,直线OM、ON中至少有一个斜率不存在,与已知矛盾) 设原点O到直线的距离为d,则故由m的取值范围可得OMN面积的取值范围为(0,1)【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力20【答案】 【解析】解:(1)=(sinx,cosx),=(sinx,sinx),f(x)=sin2x+sinxcosx=(1cos2x)+sin2x=cos2x+sin2x=sin(2x),函数的周期为T=,由2k2x2k+(kZ)解得kxk+,f(x)的单调递增区间为k,k+,(kZ);(2)由(1)知f(x)=sin(2x),当x,时,2x,sin(2x)1,故f(x)在区间,上的最大值和最小值分别为1和【点评】本题考查向量的数量积的运算,三角函数的最值,三角函数的周期性及其求法,正弦函数的单调性,考查计算能力,此类题目的解答,关键是基本的三角函数的性质的掌握熟练程度,属于中档题21【答案】 【解析】解:全集U=1,2,3,4,5,6,7,A=2,4,5,B=1,3,5,7(1)AB=1,2,3,4,5,7(2)(UA)=1,3,6,7(UA)B=1,3,7(3)AB=5U(AB)=1,2,3,4,6,7【点评】本题考查了交、并、补集的混合运算,熟练掌握交、并、补集的定义是解本题的关键22【答案】 【解析】解:(1)由分布表可得频数为50,故的数值为500.1=5,中的值为=0.40,中的值为500.2=10,中的值为50(5+20+10)=15,中的值为=0.30;(2)不低于85的概率P=0.20+0.30=0.40,获奖的人数大约为8000.40=320;(3)该程序的功能是求平均数,S=650.10+750.40+850.20+950.30=82,800名学生的平均分为82分23【答案】 【解析】(本小题满分12分)解:(1)bsinA=,由正弦定理可得:sinBsinA=sinAcosB,即得tanB=,B=(2)ABC的面积由已

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论