




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高碑店市三中2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 在正方体中, 分别为的中点,则下列直线中与直线 相交 的是( ) A直线 B直线 C. 直线 D直线2 若定义在R上的函数f(x)满足f(0)=1,其导函数f(x)满足f(x)k1,则下列结论中一定错误的是( )ABCD3 方程x= 所表示的曲线是( )A双曲线B椭圆C双曲线的一部分D椭圆的一部分4 已知,则fff(2)的值为( )A0B2C4D85 已知集合,且使中元素和中的元素对应,则的值分别为( )A B C D6 某几何体的三视图如图所示,该几何体的体积是( )ABCD7 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为( ) A4 B8 C12 D20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力8 数列中,对所有的,都有,则等于( )A B C D9 已知是ABC的一个内角,tan=,则cos(+)等于( )ABCD10已知向量=(1,3),=(x,2),且,则x=( )ABCD11某工厂生产某种产品的产量x(吨)与相应的生产能耗y(吨标准煤)有如表几组样本数据:x3456y2.5344.5据相关性检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为0.7,则这组样本数据的回归直线方程是( )A =0.7x+0.35B =0.7x+1C =0.7x+2.05D =0.7x+0.45 12设l,m,n表示不同的直线,表示不同的平面,给出下列四个命题:若ml,m,则l;若ml,m,则l;若=l,=m,=n,则lmn;若=l,=m,=n,n,则lm其中正确命题的个数是( )A1B2C3D4二、填空题13若命题“xR,x22x+m0”是假命题,则m的取值范围是14在下列给出的命题中,所有正确命题的序号为 函数y=2x3+3x1的图象关于点(0,1)成中心对称;对x,yR若x+y0,则x1或y1;若实数x,y满足x2+y2=1,则的最大值为;若ABC为锐角三角形,则sinAcosB在ABC中,BC=5,G,O分别为ABC的重心和外心,且=5,则ABC的形状是直角三角形15若函数f(x)=x22x(x2,4),则f(x)的最小值是16若函数f(x)=,则f(7)+f(log36)=17在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是18抛物线的焦点为,经过其准线与轴的交点的直线与抛物线切于点,则外接圆的标准方程为_.三、解答题19如图在长方形ABCD中,是CD的中点,M是线段AB上的点,(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置20已知椭圆C: =1(a2)上一点P到它的两个焦点F1(左),F2 (右)的距离的和是6(1)求椭圆C的离心率的值;(2)若PF2x轴,且p在y轴上的射影为点Q,求点Q的坐标21(本小题满分12分)已知圆:的圆心在第二象限,半径为,且圆与直线及轴都相切.(1)求;(2)若直线与圆交于两点,求.22(本小题满分12分)已知函数.(1)若函数在定义域上是单调增函数,求的最小值;(2)若方程在区间上有两个不同的实根,求的取值范围.23如图,在四棱锥PABCD中,ADBC,ABAD,ABPA,BC=2AB=2AD=4BE,平面PAB平面ABCD,()求证:平面PED平面PAC;()若直线PE与平面PAC所成的角的正弦值为,求二面角APCD的平面角的余弦值24现有5名男生和3名女生(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?高碑店市三中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】试题分析:根据已满治安的概念可得直线都和直线为异面直线,和在同一个平面内,且这两条直线不平行;所以直线和相交,故选D.考点:异面直线的概念与判断.2 【答案】C【解析】解;f(x)=f(x)k1,k1,即k1,当x=时,f()+1k=,即f()1=故f(),所以f(),一定出错,故选:C3 【答案】C【解析】解:x=两边平方,可变为3y2x2=1(x0),表示的曲线为双曲线的一部分;故选C【点评】本题主要考查了曲线与方程解题的过程中注意x的范围,注意数形结合的思想4 【答案】C【解析】解:20f(2)=0f(f(2)=f(0)0=0f(0)=2即f(f(2)=f(0)=220f(2)=22=4即ff(2)=f(f(0)=f(2)=4故选C5 【答案】D【解析】试题分析:分析题意可知:对应法则为,则应有(1)或(2),由于,所以(1)式无解,解(2)式得:。故选D。考点:映射。6 【答案】A【解析】解:几何体如图所示,则V=,故选:A【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键7 【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,所以此四棱锥体积为,故选C.8 【答案】C【解析】试题分析:由,则,两式作商,可得,所以,故选C考点:数列的通项公式9 【答案】B【解析】解:由于是ABC的一个内角,tan=,则=,又sin2+cos2=1,解得sin=,cos=(负值舍去)则cos(+)=coscossinsin=()=故选B【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题10【答案】C【解析】解:,3x+2=0,解得x=故选:C【点评】本题考查了向量共线定理、方程的解法,考查了推理能力与计算能力,属于中档题11【答案】A【解析】解:设回归直线方程=0.7x+a,由样本数据可得, =4.5, =3.5因为回归直线经过点(,),所以3.5=0.74.5+a,解得a=0.35故选A【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键12【答案】 B【解析】解:若ml,m,则由直线与平面垂直的判定定理,得l,故正确;若ml,m,则l或l,故错误;如图,在正方体ABCDA1B1C1D1中,平面ABB1A1平面ABCD=AB,平面ABB1A1平面BCC1B1=BB1,平面ABCD平面BCC1B1=BC,由AB、BC、BB1两两相交,得:若=l,=m,=n,则lmn不成立,故是假命题;若=l,=m,=n,n,则由=n知,n且n,由n及n,=m,得nm,同理nl,故ml,故命题正确故选:B【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间思维能力的培养二、填空题13【答案】m1 【解析】解:若命题“xR,x22x+m0”是假命题,则命题“xR,x22x+m0”是真命题,即判别式=44m0,解得m1,故答案为:m114【答案】 :【解析】解:对于函数y=2x33x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于点(0,1)的对称点为(x0,2y0)也满足函数的解析式,则正确;对于对x,yR,若x+y0,对应的是直线y=x以外的点,则x1,或y1,正确;对于若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(2,0)连线的斜率,其最大值为,正确;对于若ABC为锐角三角形,则A,B,AB都是锐角,即AB,即A+B,BA,则cosBcos(A),即cosBsinA,故不正确对于在ABC中,G,O分别为ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则ODBC,GD=AD,=|,由则,即则又BC=5则有由余弦定理可得cosC0,即有C为钝角则三角形ABC为钝角三角形;不正确故答案为:15【答案】0 【解析】解:f(x)=x22x=(x1)21,其图象开口向上,对称抽为:x=1,所以函数f(x)在2,4上单调递增,所以f(x)的最小值为:f(2)=2222=0故答案为:0【点评】本题考查二次函数在闭区间上的最值问题,一般运用数形结合思想进行处理16【答案】5 【解析】解:f(x)=,f(7)=log39=2,f(log36)=+1=,f(7)+f(log36)=2+3=5故答案为:517【答案】 【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为: =剩下的凸多面体的体积是1=故答案为:【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力18【答案】或【解析】试题分析:由题意知,设,由,则切线方程为,代入得,则,可得,则外接圆以为直径,则或.故本题答案填或1考点:1.圆的标准方程;2.抛物线的标准方程与几何性质三、解答题19【答案】 【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),由,可得与共线;(2)解:假设线段AB上是否存在点M,使得与垂直,设M(t,0)(0t2),则B(2,0),D(0,1),M(t,0),由=2(t2)1=0,解得t=,线段AB上存在点,使得与垂直;(3)解:由图看出,当P在线段BC上时,在上的投影最大,则有最大值为4【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题20【答案】 【解析】解:(1)根据椭圆的定义得2a=6,a=3;c=;即椭圆的离心率是;(2);x=带入椭圆方程得,y=;所以Q(0,)21【答案】(1) ,;(2).【解析】试题解析:(1)由题意,圆方程为,且,圆与直线及轴都相切,圆方程为,化为一般方程为,.(2)圆心到直线的距离为,.考点:圆的方程;2.直线与圆的位置关系.122【答案】(1);(2).1111【解析】则对恒成立,即对恒成立,而当时,.若函数在上递减,则对恒成立,即对恒成立,这是不可能的.综上,.的最小值为1. 1(2)由,得,即,令,得的根为1,考点:1、利用导数研究函数的单调性;2、函数零点问题及不等式恒成立问题.【方法点晴】本题主要考查利用导数研究函数的单调性、函数零点问题及不等式恒成立问题,属于难题不等式恒成立问题常见方法:分离参数恒成立(即可)或恒成(即可);数形结合;讨论最值或恒成立;讨论参数.本题(2)就是先将问题转化为不等式恒成立问题后再利用求得的最小值的.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.23【答案】 【解析】解:()平面PAB平面ABCD,平面PAB平面ABCD=AB,ABPAPA平面ABCD结合ABAD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系oxyz,如图所示可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,) (0),得,DEAC且DEAP,AC、AP是平面PAC内的相交直线,ED平面PACED平面PED平面PED平面PAC()由()得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为,则,解之得=20,=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y0,z0),由, ,得到,令x0=1,可得y0=z0=1,得=(1,1,1)cos,由图形可得二面角APCD的平面角是锐角,二面角APCD的平面角的余弦值为【点评】本题在四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司职业鉴定活动方案
- 公司新年拍照策划方案
- 公司献血公益活动策划方案
- 公司种植绿植活动方案
- 公司特卖现场活动方案
- 公司电商短视频策划方案
- 公司温泉度假活动方案
- 公司腊八节慰问活动方案
- 公司水枪大战活动方案
- 公司相亲会会活动方案
- 新教材人教a版选择性必修第三册8.1成对数据的统计相关性课件2
- 芬顿试剂投加量计算
- 精选《机械制图》期末考试题库388题(含答案)
- 2023年山西万家寨水务控股集团有限公司招聘笔试题库及答案解析
- 数码照片档案管理夏2014
- GB/T 19249-2003反渗透水处理设备
- 2023年德阳市旌阳区广播电视台(融媒体中心)招聘笔试题库及答案解析
- 小学生职业生涯规划启蒙课件PPT
- 钻井安全操作规范
- 食用菌生产技术 大球盖菇栽培技术课件
- 花城版小学二年级音乐(下)全册教案
评论
0/150
提交评论