锡林浩特市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
锡林浩特市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
锡林浩特市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
锡林浩特市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
锡林浩特市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

锡林浩特市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 设函数,其中,若存在唯一的整数,使得,则的取值范围是( )A B C D11112 已知实数a,b,c满足不等式0abc1,且M=2a,N=5b,P=()c,则M、N、P的大小关系为( )AMNPBPMNCNPM3 一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积是( )A8cm2B12cm2C16cm2D20cm24 如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(,),AOC=,若|BC|=1,则cos2sincos的值为( )ABCD5 下列函数中,定义域是且为增函数的是( )A. B. C. D.6 设a=60.5,b=0.56,c=log0.56,则( )AcbaBcabCbacDbca7 下列说法中正确的是( )A三点确定一个平面B两条直线确定一个平面C两两相交的三条直线一定在同一平面内D过同一点的三条直线不一定在同一平面内8 九章算术是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等问各得几何”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列问五人各得多少钱?”(“钱”是古代的一种重量单位)这个问题中,甲所得为( )A钱B钱C钱D钱9 设集合A1,2,3,B4,5,Mx|xab,aA,bB,则M中元素的个数为()。A3B4C5D610已知等比数列an的第5项是二项式(x+)4展开式的常数项,则a3a7( )A5B18C24D3611设集合是三角形的三边长,则所表示的平面区域是( ) A B C D12双曲线的渐近线方程是( )ABCD二、填空题13若全集,集合,则 。14设满足条件,若有最小值,则的取值范围为 15函数y=f(x)的图象在点M(1,f(1)处的切线方程是y=3x2,则f(1)+f(1)=16若执行如图3所示的框图,输入,则输出的数等于 。17已知线性回归方程=9,则b=18某工厂的某种型号的机器的使用年限x和所支出的维修费用y(万元)的统计资料如表:x681012y2356根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为万元三、解答题19在三棱锥SABC中,SA平面ABC,ABAC()求证:ABSC;()设D,F分别是AC,SA的中点,点G是ABD的重心,求证:FG平面SBC;()若SA=AB=2,AC=4,求二面角AFDG的余弦值20如图,A地到火车站共有两条路径和,据统计,通过两条路径所用的时间互不影响,所用时间落在个时间段内的频率如下表:现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望 。21(本题满分15分)如图,已知长方形中,为的中点,将沿折起,使得平面平面(1)求证:;(2)若,当二面角大小为时,求的值【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力22设点P的坐标为(x3,y2)(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率23已知数列an的前n项和为Sn,且Sn=an,数列bn中,b1=1,点P(bn,bn+1)在直线xy+2=0上(1)求数列an,bn的通项an和bn;(2)设cn=anbn,求数列cn的前n项和Tn24已知命题p:不等式|x1|m1的解集为R,命题q:f(x)=(52m)x是减函数,若p或q为真命题,p且q为假命题,求实数m的取值范围 锡林浩特市第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】考点:函数导数与不等式1【思路点晴】本题主要考查导数的运用,涉及划归与转化的数学思想方法.首先令将函数变为两个函数,将题意中的“存在唯一整数,使得在直线的下方”,转化为存在唯一的整数,使得在直线的下方.利用导数可求得函数的极值,由此可求得的取值范围. 2 【答案】A【解析】解:0abc1,12a2,5b1,()c1,5b=()b()c()c,即MNP,故选:A【点评】本题主要考查函数值的大小比较,根据幂函数和指数函数的单调性的性质是解决本题的关键3 【答案】B【解析】解:正方体的顶点都在球面上,则球为正方体的外接球,则2=2R,R=,S=4R2=12故选B4 【答案】 A【解析】解:|BC|=1,点B的坐标为(,),故|OB|=1,BOC为等边三角形,BOC=,又AOC=,AOB=,cos()=,sin()=,sin()=cos=cos()=coscos()+sinsin() =+=,sin=sin()=sincos()cossin()=cos2sincos=(2cos21)sin=cossin=,故选:A【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题5 【答案】B 【解析】试题分析:对于A,为增函数,为减函数,故为减函数,对于B,故为增函数,对于C,函数定义域为,不为,对于D,函数为偶函数,在上单调递减,在上单调递增,故选B. 考点:1、函数的定义域;2、函数的单调性.6 【答案】A【解析】解:a=60.51,0b=0.561,c=log0.560,cba故选:A【点评】本题考查了指数函数与对数函数的单调性,属于基础题7 【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,两两相交且不共点的三条直线确定一个平面,当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确故选:D8 【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a2d,ad,a,a+d,a+2d,则由题意可知,a2d+ad=a+a+d+a+2d,即a=6d,又a2d+ad+a+a+d+a+2d=5a=5,a=1,则a2d=a2=故选:B9 【答案】B【解析】由题意知xab,aA,bB,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B10【答案】D【解析】解:二项式(x+)4展开式的通项公式为Tr+1=x42r,令42r=0,解得r=2,展开式的常数项为6=a5,a3a7=a52=36,故选:D【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题11【答案】A【解析】考点:二元一次不等式所表示的平面区域.12【答案】B【解析】解:双曲线标准方程为,其渐近线方程是=0,整理得y=x故选:B【点评】本题考查双曲线的简单性质的应用,令标准方程中的“1”为“0”即可求出渐近线方程属于基础题二、填空题13【答案】|01【解析】,|01。14【答案】【解析】解析:不等式表示的平面区域如图所示,由得,当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最小值;当时,平移直线可知,既没有最大值,也没有最小值;当时,平移直线可知,在点A处取得最大值,综上所述,15【答案】4 【解析】解:由题意得f(1)=3,且f(1)=312=1所以f(1)+f(1)=3+1=4故答案为4【点评】本题主要考查导数的几何意义,要注意分清f(a)与f(a)16【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则。17【答案】4 【解析】解:将代入线性回归方程可得9=1+2b,b=4故答案为:4【点评】本题考查线性回归方程,考查计算能力,属于基础题18【答案】7.5 【解析】解:由表格可知=9, =4,这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,4=0.79+,=2.3,这组数据对应的线性回归方程是=0.7x2.3,x=14,=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错三、解答题19【答案】 【解析】()证明:SA平面ABC,AB平面ABC,SAAB,又ABAC,SAAC=A,AB平面SAC,又AS平面SAC,ABSC()证明:取BD中点H,AB中点M,连结AH,DM,GF,FM,D,F分别是AC,SA的中点,点G是ABD的重心,AH过点G,DM过点G,且AG=2GH,由三角形中位线定理得FDSC,FMSB,FMFD=F,平面FMD平面SBC,FG平面FMD,FG平面SBC()解:以A为原点,AB为x轴,AC为y轴,AS为z轴,建立空间直角坐标系,SA=AB=2,AC=4,B(2,0,0),D(0,2,0),H(1,1,0),A(0,0,0),G(,0),F(0,0,1),=(0,2,1),=(),设平面FDG的法向量=(x,y,z),则,取y=1,得=(2,1,2),又平面AFD的法向量=(1,0,0),cos,=二面角AFDG的余弦值为【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用20【答案】【解析】(1)Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,i=1,2,用频率估计相应的概率可得P(A1)=0。1+0。2+0。3=0。6,P(A2)=0。1+0。4=0。5,P(A1) P(A2),甲应选择LiP(B1)=0。1+0。2+0。3+0。2=0。8,P(B2)=0。1+0。4+0。4=0。9,P(B2) P(B1),乙应选择L2。(2)A,B分别表示针对()的选择方案,甲、乙在各自允许的时间内赶到火车站,由()知,又由题意知,A,B独立,21【答案】(1)详见解析;(2).【解析】(1)由于,则, 又平面平面,平面平面,平面,平面,3分又平面,有;6分22【答案】 【解析】解:(1)由已知得,基本事件(2,1),(2,0),(2,1),(1,1),(1,0),(1,1),(0,1),(0,0)(0,1)共9种4(分)设“点P在第二象限”为事件A,事件A有(2,1),(1,1)共2种则P(A)=6(分)(2)设“点P在第三象限”为事件B,则事件B满足8(分),作出不等式组对应的平面区域如图:则P(B)=12(分)23【答案】 【解析】解:(1)Sn=an,当n2时,an=SnSn1=an,即an=3an1,a1=S1=,a1=3数列an是等比数列,an=3n 点P(bn,bn+1)在直线xy+2=0上,bn+1bn=2,即数列bn是等差数列,又b1=1,bn=2n1(2)cn=anbn=(2n1)3n,Tn=13+332+533+(2n3)3n1+(2n1)3n,3Tn=132+333+534+(2n3)3n+(2n1)3n+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论