南明区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
南明区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
南明区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
南明区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
南明区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

南明区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 函数y=f(x)是函数y=f(x)的导函数,且函数y=f(x)在点p(x0,f(x0)处的切线为l:y=g(x)=f(x0)(xx0)+f(x0),F(x)=f(x)g(x),如果函数y=f(x)在区间a,b上的图象如图所示,且ax0b,那么( )AF(x0)=0,x=x0是F(x)的极大值点BF(x0)=0,x=x0是F(x)的极小值点CF(x0)0,x=x0不是F(x)极值点DF(x0)0,x=x0是F(x)极值点2 函数f(x)=1xlnx的零点所在区间是( )A(0,)B(,1)C(1,2)D(2,3)3 二进制数化为十进制数的结果为( )A B C D 4 设曲线在点处的切线的斜率为,则函数的部分图象可以为( )A B C. D5 如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,将线段竖直放置在同一水平线上,则大致的图形是( )ABCD6 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是( )Ak7Bk6Ck5Dk47 设数集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,如果把ba叫做集合x|axb的“长度”,那么集合MN的“长度”的最小值是( )ABCD8 函数y=2|x|的图象是( )ABCD9 设D、E、F分别是ABC的三边BC、CA、AB上的点,且=2, =2, =2,则与( )A互相垂直B同向平行C反向平行D既不平行也不垂直10如图甲所示, 三棱锥 的高 ,分别在 和上,且,图乙的四个图象大致描绘了三棱锥的体积与的变化关系,其中正确的是( ) A B C. D111111棱台的两底面面积为、,中截面(过各棱中点的面积)面积为,那么( )A B C D12已知双曲线,分别在其左、右焦点,点为双曲线的右支上的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐近线平行且距离为,则双曲线的离心率是( )A B2 C D二、填空题13设幂函数的图象经过点,则= 14有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色的涂料,且三个房间的颜色各不相同三个房间的粉刷面积和三种颜色的涂料费用如下表:那么在所有不同的粉刷方案中,最低的涂料总费用是_元15抛物线y2=6x,过点P(4,1)引一条弦,使它恰好被P点平分,则该弦所在的直线方程为16抛物线y=x2的焦点坐标为( )A(0,)B(,0)C(0,4)D(0,2)17已知f(x)=,x0,若f1(x)=f(x),fn+1(x)=f(fn(x),nN+,则f2015(x)的表达式为18已知函数f(x)的定义域为1,5,部分对应值如下表,f(x)的导函数y=f(x)的图象如图示 x1045f(x)1221下列关于f(x)的命题:函数f(x)的极大值点为0,4;函数f(x)在0,2上是减函数;如果当x1,t时,f(x)的最大值是2,那么t的最大值为4;当1a2时,函数y=f(x)a有4个零点;函数y=f(x)a的零点个数可能为0、1、2、3、4个其中正确命题的序号是三、解答题19(本小题满分12分)如图,多面体中,四边形ABCD为菱形,且,.(1)求证:;(2)若,求三棱锥的体积.20等比数列an的各项均为正数,且2a1+3a2=1,a32=9a2a6,()求数列an的通项公式;()设bn=log3a1+log3a2+log3an,求数列的前n项和 21提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20x200时,车流速度v是车流密度x的一次函数()当0x200时,求函数v(x)的表达式;()当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值(精确到1辆/小时) 22已知不等式ax23x+64的解集为x|x1或xb,(1)求a,b;(2)解不等式ax2(ac+b)x+bc023为了解某地区观众对大型综艺活动中国好声音的收视情况,随机抽取了100名观众进行调查,其中女性有55名下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性()根据已知条件完成下面的22列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计()将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率P(K2k)0.050.01k3.8416.635附:K2=24(本小题满分12分)已知函数.(1)求函数在上的最大值和最小值;(2)在中,角所对的边分别为,满足,求的值.1111南明区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】 B【解析】解:F(x)=f(x)g(x)=f(x)f(x0)(xx0)f(x0),F(x)=f(x)f(x0)F(x0)=0,又由ax0b,得出当axx0时,f(x)f(x0),F(x)0,当x0xb时,f(x)f(x0),F(x)0,x=x0是F(x)的极小值点故选B【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值2 【答案】C【解析】解:f(1)=10,f(2)=12ln2=ln0,函数f(x)=1xlnx的零点所在区间是(1,2)故选:C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反3 【答案】【解析】试题分析:,故选B.考点:进位制4 【答案】A 【解析】试题分析:,为奇函数,排除B,D,令时,故选A. 1考点:1、函数的图象及性质;2、选择题“特殊值”法.5 【答案】C【解析】根据题意有:A的坐标为:(0,0,0),B的坐标为(11,0,0),C的坐标为(11,7,0),D的坐标为(0,7,0);A1的坐标为:(0,0,12),B1的坐标为(11,0,12),C1的坐标为(11,7,12),D1的坐标为(0,7,12);E的坐标为(4,3,12)(1)l1长度计算所以:l1=|AE|=13。(2)l2长度计算将平面A1B1C1D1沿Z轴正向平移AA1个单位,得到平面A2B2C2D2;显然有:A2的坐标为:(0,0,24),B2的坐标为(11,0,24),C2的坐标为(11,7,24),D2的坐标为(0,7,24);显然平面A2B2C2D2和平面ABCD关于平面A1B1C1D1对称。设AE与的延长线与平面A2B2C2D2相交于:E2(xE2,yE2,24)根据相识三角形易知:xE2=2xE=24=8,yE2=2yE=23=6,即:E2(8,6,24)根据坐标可知,E2在长方形A2B2C2D2内。6 【答案】 C【解析】解:程序在运行过程中各变量值变化如下表: K S 是否继续循环循环前 1 0第一圈 2 2 是第二圈 3 7 是第三圈 4 18 是第四圈 5 41 是第五圈 6 88 否故退出循环的条件应为k5?故答案选C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视程序填空也是重要的考试题型,这种题考试的重点有:分支的条件循环的条件变量的赋值变量的输出其中前两点考试的概率更大此种题型的易忽略点是:不能准确理解流程图的含义而导致错误7 【答案】C【解析】解:集M=x|mxm+,N=x|nxn,P=x|0x1,且M,N都是集合P的子集,根据题意,M的长度为,N的长度为,当集合MN的长度的最小值时,M与N应分别在区间0,1的左右两端,故MN的长度的最小值是=故选:C8 【答案】B【解析】解:f(x)=2|x|=2|x|=f(x)y=2|x|是偶函数,又函数y=2|x|在0,+)上单调递增,故C错误且当x=0时,y=1;x=1时,y=2,故A,D错误故选B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键9 【答案】D【解析】解:如图所示,ABC中, =2, =2, =2,根据定比分点的向量式,得=+,=+, =+,以上三式相加,得+=,所以,与反向共线【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目10【答案】A【解析】考点:几何体的体积与函数的图象.【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题. 11【答案】A【解析】试题分析:不妨设棱台为三棱台,设棱台的高为上部三棱锥的高为,根据相似比的性质可得:,解得,故选A考点:棱台的结构特征12【答案】C【解析】试题分析:由题意知到直线的距离为,那么,得,则为等轴双曲线,离心率为.故本题答案选C. 1考点:双曲线的标准方程与几何性质【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.二、填空题13【答案】【解析】试题分析:由题意得考点:幂函数定义14【答案】1464【解析】【知识点】函数模型及其应用【试题解析】显然,面积大的房间用费用低的涂料,所以房间A用涂料1,房间B用涂料3,房间C用涂料2,即最低的涂料总费用是元。故答案为:146415【答案】3xy11=0 【解析】解:设过点P(4,1)的直线与抛物线的交点为A(x1,y1),B(x2,y2),即有y12=6x1,y22=6x2,相减可得,(y1y2)(y1+y2)=6(x1x2),即有kAB=3,则直线方程为y1=3(x4),即为3xy11=0将直线y=3x11代入抛物线的方程,可得9x272x+121=0,判别式为722491210,故所求直线为3xy11=0故答案为:3xy11=016【答案】D【解析】解:把抛物线y=x2方程化为标准形式为x2=8y,焦点坐标为(0,2)故选:D【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键17【答案】 【解析】解:由题意f1(x)=f(x)=f2(x)=f(f1(x)=,f3(x)=f(f2(x)=,fn+1(x)=f(fn(x)=,故f2015(x)=故答案为:18【答案】 【解析】解:由导数图象可知,当1x0或2x4时,f(x)0,函数单调递增,当0x2或4x5,f(x)0,函数单调递减,当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2),所以正确;正确;因为在当x=0和x=4,函数取得极大值f(0)=2,f(4)=2,要使当x1,t函数f(x)的最大值是4,当2t5,所以t的最大值为5,所以不正确;由f(x)=a知,因为极小值f(2)未知,所以无法判断函数y=f(x)a有几个零点,所以不正确,根据函数的单调性和极值,做出函数的图象如图,(线段只代表单调性),根据题意函数的极小值不确定,分f(2)1或1f(2)2两种情况,由图象知,函数y=f(x)和y=a的交点个数有0,1,2,3,4等不同情形,所以正确,综上正确的命题序号为故答案为:【点评】本题考查导数知识的运用,考查导函数与原函数图象之间的关系,正确运用导函数图象是关键三、解答题19【答案】【解析】【命题意图】本小题主要考查空间直线与直线、直线与平面的位置关系及几何体的体积等基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想等(2)在中,20【答案】【解析】解:()设数列an的公比为q,由a32=9a2a6得a32=9a42,所以q2=由条件可知各项均为正数,故q=由2a1+3a2=1得2a1+3a1q=1,所以a1=故数列an的通项式为an=()bn=+=(1+2+n)=,故=2()则+=2=,所以数列的前n项和为【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n项和的公式,会进行数列的求和运算,是一道中档题21【答案】 【解析】解:() 由题意:当0x20时,v(x)=60;当20x200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为()依题并由()可得当0x20时,f(x)为增函数,故当x=20时,其最大值为6020=1200当20x200时,当且仅当x=200x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200上取得最大值综上所述,当x=100时,f(x)在区间0,200上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:() 函数v(x)的表达式() 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时 22【答案】 【解析】解:(1)因为不等式ax23x+64的解集为x|x1或xb,所以x1=1与x2=b是方程ax23x+2=0的两个实数根,且b1由根与系的关系得,解得,所以得(2)由于a=1且 b=2,所以不等式ax2(ac+b)x+bc0,即x2(2+c)x+2c0,即(x2)(xc)0当c2时,不等式(x2)(xc)0的解集为x|2xc;当c2时,不等式(x2)(xc)0的解集为x|cx2;当c=2时,不等式(x2)(xc)0的解集为综上所述:当c2时,不等式ax2(ac+b)x+bc0的解集为x|2xc;当c2时,不等式ax2(ac+b)x+bc0的解集为x|cx2;当c=2时,不等式ax2(ac+b)x+bc0的解集为【点评】本题考查一元二次不等式的解法,一元二次不等式与一元二次方程的关系,属于基础题23【答案】 【解析】解:()由统计表可知,在抽取的100人中,“歌迷”有25人,从而完成22列联表如下:非歌迷歌迷合计男301545女451055合计7525100将22列联表中的数据代入公式计算,得:K2=3.030因为3.0303.841,所以我们没有95%的把握

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论