




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
东明县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 下列函数中,既是偶函数,又在区间(0,+)上单调递减的是( )ABy=x2Cy=x|x|Dy=x22 方程x2+2ax+y2=0(a0)表示的圆( )A关于x轴对称B关于y轴对称C关于直线y=x轴对称D关于直线y=x轴对称3 已知的终边过点,则等于( )A B C-5 D54 若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=( )A1B2C3D45 直线:(为参数)与圆:(为参数)的位置关系是()A相离 B相切 C相交且过圆心 D相交但不过圆心6 数列1,3,6,10,的一个通项公式是( )A B C D7 在三棱柱中,已知平面,此三棱 柱各个顶点都在一个球面上,则球的体积为( ) A B C. D8 (2015秋新乡校级期中)已知x+x1=3,则x2+x2等于( )A7B9C11D139 若关于x的方程x3x2x+a=0(aR)有三个实根x1,x2,x3,且满足x1x2x3,则a的取值范围为( )AaBa1Ca1Da110已知双曲线C 的一个焦点与抛物线y2=8x的焦点相同,且双曲线C过点P(2,0),则双曲线C的渐近线方程是( )Ay=xBy=Cxy=2xDy=x11已知|=3,|=1,与的夹角为,那么|4|等于( )A2BCD1312设数列an的前n项和为Sn,若Sn=n2+2n(nN*),则+=( )ABCD二、填空题13设是空间中给定的个不同的点,则使成立的点的个数有_个14设函数f(x)=则函数y=f(x)与y=的交点个数是15已知数列an中,2an,an+1是方程x23x+bn=0的两根,a1=2,则b5=16如果定义在R上的函数f(x),对任意x1x2都有x1f(x1)+x2f(x2)x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数f(x)=3x+1 f(x)=()x+1f(x)=x2+1 f(x)=其中是“H函数”的有(填序号)17已知为钝角,sin(+)=,则sin()=18(若集合A2,3,7,且A中至多有1个奇数,则这样的集合共有个三、解答题19 20.(1)求函数的单调递减区间;(2)在中,角的对边分别为,若,的面积为,求的最小值. 21【南京市2018届高三数学上学期期初学情调研】已知函数f(x)2x33(a+1)x26ax,aR()曲线yf(x)在x0处的切线的斜率为3,求a的值;()若对于任意x(0,+),f(x)f(x)12lnx恒成立,求a的取值范围;()若a1,设函数f(x)在区间1,2上的最大值、最小值分别为M(a)、m(a),记h(a)M(a)m(a),求h(a)的最小值22(本小题满分12分)已知等差数列的前项和为,且,(1)求的通项公式和前项和;(2)设,为数列的前项和,若不等式对于任意的恒成立,求实数的取值范围23(本小题满分12分)已知椭圆:的左、右焦点分别为,过点作垂直于轴的直线,直线垂直于点,线段的垂直平分线交于点.(1)求点的轨迹的方程;(2)过点作两条互相垂直的直线,且分别交椭圆于,求四边形面积的最小值.24已知函数f(x)=alnx+,曲线y=f(x)在点(1,f(1)处的切线方程为y=2(I)求a、b的值;()当x1时,不等式f(x)恒成立,求实数k的取值范围 东明县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】D【解析】解:函数为非奇非偶函数,不满足条件;函数y=x2为偶函数,但在区间(0,+)上单调递增,不满足条件;函数y=x|x|为奇函数,不满足条件;函数y=x2为偶函数,在区间(0,+)上单调递减,满足条件;故选:D【点评】本题考查的知识点是函数的单调性与函数的奇偶性,是函数图象和性质的综合应用,难度不大,属于基础题2 【答案】A【解析】解:方程x2+2ax+y2=0(a0)可化为(x+a)2+y2=a2,圆心为(a,0),方程x2+2ax+y2=0(a0)表示的圆关于x轴对称,故选:A【点评】此题考查了圆的一般方程,方程化为标准方程是解本题的关键3 【答案】B【解析】考点:三角恒等变换4 【答案】A【解析】解:f(x)=acosx,g(x)=x2+bx+1,f(x)=asinx,g(x)=2x+b,曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,f(0)=a=g(0)=1,且f(0)=0=g(0)=b,即a=1,b=0a+b=1故选:A【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题5 【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2圆心到直线的距离为:,所以直线与圆相交。又圆心不在直线上,所以直线不过圆心。故答案为:D6 【答案】C【解析】试题分析:可采用排除法,令和,验证选项,只有,使得,故选C考点:数列的通项公式7 【答案】A【解析】 考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.8 【答案】A【解析】解:x+x1=3,则x2+x2=(x+x1)22=322=7故选:A【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题9 【答案】B【解析】解:由x3x2x+a=0得a=x3x2x,设f(x)=x3x2x,则函数的导数f(x)=3x22x1,由f(x)0得x1或x,此时函数单调递增,由f(x)0得x1,此时函数单调递减,即函数在x=1时,取得极小值f(1)=111=1,在x=时,函数取得极大值f()=()3()2()=,要使方程x3x2x+a=0(aR)有三个实根x1,x2,x3,则1a,即a1,故选:B【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键10【答案】A【解析】解:抛物线y2=8x的焦点(2,0),双曲线C 的一个焦点与抛物线y2=8x的焦点相同,c=2,双曲线C过点P(2,0),可得a=2,所以b=2双曲线C的渐近线方程是y=x故选:A【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查11【答案】C【解析】解:|=3,|=1,与的夹角为,可得=|cos,=31=,即有|4|=故选:C【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题12【答案】D【解析】解:Sn=n2+2n(nN*),当n=1时,a1=S1=3;当n2时,an=SnSn1=(n2+2n)(n1)2+2(n1)=2n+1=,+=+=故选:D【点评】本题考查了递推关系、“裂项求和”方法,考查了推理能力与计算能力,属于中档题二、填空题13【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M,使成立。故答案为:14【答案】4 【解析】解:在同一坐标系中作出函数y=f(x)=的图象与函数y=的图象,如下图所示,由图知两函数y=f(x)与y=的交点个数是4故答案为:415【答案】1054 【解析】解:2an,an+1是方程x23x+bn=0的两根,2an+an+1=3,2anan+1=bn,a1=2,a2=1,同理可得a3=5,a4=7,a5=17,a6=31则b5=217(31)=1054故答案为:1054【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题16【答案】 【解析】解:对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)x1f(x2)+x2f(x1)恒成立,不等式等价为(x1x2)f(x1)f(x2)0恒成立,即函数f(x)是定义在R上的不减函数(即无递减区间);f(x)在R递增,符合题意;f(x)在R递减,不合题意;f(x)在(,0)递减,在(0,+)递增,不合题意;f(x)在R递增,符合题意;故答案为:17【答案】 【解析】解:sin(+)=,cos()=cos(+)=sin(+)=,为钝角,即,sin()0,sin()=,故答案为:【点评】本题考查运用诱导公式求三角函数值,注意不同角之间的关系,正确选择公式,运用平方关系时,必须注意角的范围,以确定函数值的符号18【答案】6 【解析】解:集合A为2,3,7的真子集有7个,奇数3、7都包含的有3,7,则符合条件的有71=6个故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查三、解答题19【答案】一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为5,15,(15,25,(25,35,(35,45,由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在5,15内的小球个数为X,求X的分布列和数学期望(以直方图中的频率作为概率)【考点】离散型随机变量及其分布列;离散型随机变量的期望与方差【专题】概率与统计【分析】(1)求解得a=0.03,由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20根据平均数值公式求解即可(2)XB(3,),根据二项分布求解P(X=0),P(X=1),P(X=2)=,P(X=3),列出分布列,求解数学期望即可【解析】解:(1)由题意得,(0.02+0.032+a+0.018)10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值为:=0.210+0.3220+0.330+0.1840=24.6(克)故估计盒子中小球重量的平均值约为24.6克(2)利用样本估计总体,该盒子中小球的重量在5,15内的0.2;则XB(3,),X=0,1,2,3;P(X=0)=()3=;P(X=1)=()2=;P(X=2)=()()2=;P(X=3)=()3=,X的分布列为:X0123P即E(X)=0=【点评】本题考查了离散型的随机变量及概率分布列,数学期望的求解,注意阅读题意,得出随机变量的数值,准确求解概率,难度不大,需要很好的计算能力20【答案】(1)();(2).【解析】试题分析:(1)根据可求得函数的单调递减区间;(2)由可得,再由三角形面积公式可得,根据余弦定理及基本不等式可得的最小值. 1试题解析:(1),令,解得,的单调递减区间为().考点:1、正弦函数的图象和性质;2、余弦定理、基本不等式等知识的综合运用21【答案】(1)a(2)(,1(3)【解析】(2)f(x)f(x)6(a1)x212lnx对任意x(0,+)恒成立,所以(a1)令g(x),x0,则g(x)令g(x)0,解得x当x(0,)时,g(x)0,所以g(x)在(0,)上单调递增;当x(,)时,g(x)0,所以g(x)在(,)上单调递减所以g(x)maxg(),所以(a1),即a1,所以a的取值范围为(,1(3)因为f(x)2x33(a1)x26ax,所以f (x)6x26(a1)x6a6(x1)(xa),f(1)3a1,f(2)4令f (x)0,则x1或a f(1)3a1,f(2)4当a2时,当x(1,a)时,f (x)0,所以f(x)在(1,a)上单调递减;当x(a,2)时,f (x)0,所以f(x)在(a,2)上单调递增又因为f(1)f(2),所以M(a)f(1)3a1,m(a)f(a)a33a2,所以h(a)M(a)m(a)3a1(a33a2)a33a23a1因为h (a)3a26a33(a1)20所以h(a)在(,2)上单调递增,所以当a(,2)时,h(a)h()当a2时,当x(1,2)时,f (x)0,所以f(x)在(1,2)上单调递减,所以M(a)f(1)3a1,m(a)f(2)4,所以h(a)M(a)m(a)3a143a5,所以h(a)在2,)上的最小值为h(2)1综上,h(a)的最小值为点睛:已知函数最值求参数值或取值范围的一般方法:(1)利用导数结合参数讨论函数最值取法,根据最值列等量关系,确定参数值或取值范围;(2)利用最值转化为不等式恒成立问题,结合变量分离转化为不含参数的函数,利用导数求新函数最值得参数值或取值范围.22【答案】【解析】【命题意图】本题考查等差数列通项与前项和、数列求和、不等式性质等基础知识,意在考查逻辑思维能力、运算求解能力、代数变形能力,以及方程思想与裂项法的应用23【答案】(1);(2).【解析】试题分析:(1)求得椭圆的焦点坐标,连接,由垂直平分线的性质可得,运用抛物线的定义,即可得到所求轨迹方程;(2)分类讨论:当或中的一条与轴垂直而另一条与轴重合时,此时四边形面积当直线和的斜率都存在时,不妨设直线的方程为,则直线的方程为分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得,利用四边形面积即可得到关于斜率的式子,再利用配方和二次函数的最值求法,即可得出(2)当直线的斜率存在且不为零时,直线的斜率为,则直线的斜率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备监测专项管理制度
- 设备设施外观管理制度
- 设计保安门岗管理制度
- 设计服务公司管理制度
- 评估公司人员管理制度
- 诊所就诊登记管理制度
- 诊所门卫宿舍管理制度
- 试验现场检测管理制度
- 财务资金归集管理制度
- 账务处理流程管理制度
- 2020年青海省(初三学业水平考试)中考数学真题试卷含详解
- 病理学智慧树知到期末考试答案章节答案2024年温州医科大学
- 大学英语写作网络课程智慧树知到期末考试答案章节答案2024年佳木斯大学
- 小餐饮经营许可告知书承诺书范文
- T-CSTM 00607-2024 被动式超低能耗建筑外围护结构用防水隔汽膜、透汽膜及气密性配件
- DL-T5333-2021水电水利工程爆破安全监测规程
- 郑州经贸学院辅导员考试题库
- 医疗废物收集人员个人防护要求
- 山东产权交易集团有限公司招聘(校招、社招)笔试真题2023
- (正式版)HGT 6263-2024 电石渣脱硫剂
- 农村村民土地转让协议书
评论
0/150
提交评论