




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福山区一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 利用斜二测画法得到的:三角形的直观图是三角形;平行四边形的直观图是平行四边形;正方形的直观图是正方形;菱形的直观图是菱形以上结论正确的是( )A B C D2 函数f(x)=Asin(x+)(A0,0)的部分图象如图所示,则f()的值为( )AB0CD3 在中,角、所对应的边分别为、,若角、依次成等差数列,且,,则等于( )ABCD24 如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则几何体的体积为( )A. B. C. 1 D. 【命题意图】本题考查空间几何体的三视图,几何体的体积等基础知识,意在考查学生空间想象能力和计算能力5 已知直线l平面,直线m平面,有下面四个命题:(1)lm,(2)lm,(3)lm,(4)lm,其中正确命题是( )A(1)与(2)B(1)与(3)C(2)与(4)D(3)与(4)6 已知点F1,F2为椭圆的左右焦点,若椭圆上存在点P使得,则此椭圆的离心率的取值范围是( )A(0,)B(0,C(,D,1)7 已知为的三个角所对的边,若,则( )A23 B43 C31 D32【命题意图】本题考查正弦定理、余弦定理,意在考查转化能力、运算求解能力8 给出下列两个结论:若命题p:x0R,x02+x0+10,则p:xR,x2+x+10;命题“若m0,则方程x2+xm=0有实数根”的逆否命题为:“若方程x2+xm=0没有实数根,则m0”;则判断正确的是( )A对错B错对C都对D都错9 设集合M=x|x1,P=x|x26x+9=0,则下列关系中正确的是( )AM=PBPMCMPDMP=R10已知ABC是锐角三角形,则点P(cosCsinA,sinAcosB)在( )A第一象限B第二象限C第三象限D第四象限11已知集合,则( )A B C D【命题意图】本题考查集合的交集运算,意在考查计算能力12自圆:外一点引该圆的一条切线,切点为,切线的长度等于点到原点的长,则点轨迹方程为( )ABCD【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力二、填空题13给出下列命题:把函数y=sin(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x);若,是第一象限角且,则coscos;x=是函数y=cos(2x+)的一条对称轴;函数y=4sin(2x+)与函数y=4cos(2x)相同;y=2sin(2x)在是增函数;则正确命题的序号14设变量x,y满足约束条件,则的最小值为15【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数的零点在区间内,则正整数的值为_16已知(1+x+x2)(x)n(nN+)的展开式中没有常数项,且2n8,则n=17在极坐标系中,O是极点,设点A,B的极坐标分别是(2,),(3,),则O点到直线AB的距离是18设平面向量,满足且,则 ,的最大值为 .【命题意图】本题考查平面向量数量积等基础知识,意在考查运算求解能力.三、解答题19已知复数z=(1)求z的共轭复数;(2)若az+b=1i,求实数a,b的值20数列中,且满足.(1)求数列的通项公式;(2)设,求.21如图,在四边形中, 四边形绕着直线旋转一周.(1)求所成的封闭几何体的表面积;(2)求所成的封闭几何体的体积.22如图所示,在正方体中(1)求与所成角的大小;(2)若、分别为、的中点,求与所成角的大小23已知函数f(x)=sinxcosxcos2x+(0)经化简后利用“五点法”画其在某一个周期内的图象时,列表并填入的部分数据如下表:xf(x)01010()请直接写出处应填的值,并求函数f(x)在区间,上的值域;()ABC的内角A,B,C所对的边分别为a,b,c,已知f(A+)=1,b+c=4,a=,求ABC的面积24【徐州市第三中学20172018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆及等腰直角三角形,其中,为裁剪出面积尽可能大的梯形铁片(不计损耗),将点放在弧上,点放在斜边上,且,设.(1)求梯形铁片的面积关于的函数关系式;(2)试确定的值,使得梯形铁片的面积最大,并求出最大值.福山区一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】A【解析】考点:斜二测画法2 【答案】C【解析】解:由图象可得A=, =(),解得T=,=2再由五点法作图可得2()+=,解得:=,故f(x)=sin(2x),故f()=sin()=sin=,故选:C【点评】本题主要考查由函数y=Asin(x+)的部分图象求函数的解析式,属于中档题3 【答案】C【解析】因为角、依次成等差数列,所以由余弦定理知,即,解得所以, 故选C答案:C 4 【答案】D【解析】5 【答案】B【解析】解:直线l平面,l平面,又直线m平面,lm,故(1)正确;直线l平面,l平面,或l平面,又直线m平面,l与m可能平行也可能相交,还可以异面,故(2)错误;直线l平面,lm,m,直线m平面,故(3)正确;直线l平面,lm,m或m,又直线m平面,则与可能平行也可能相交,故(4)错误;故选B【点评】本题考查的知识点是空间中直线与平面之间的位置关系,其中熟练掌握空间中直线与平面位置关系的判定及性质定理,建立良好的空间想像能力是解答本题的关键6 【答案】D【解析】解:由题意设=2x,则2x+x=2a,解得x=,故|=,|=,当P与两焦点F1,F2能构成三角形时,由余弦定理可得4c2=+2cosF1PF2,由cosF1PF2(1,1)可得4c2=cosF1PF2(,),即4c2,1,即e21,e1;当P与两焦点F1,F2共线时,可得a+c=2(ac),解得e=;综上可得此椭圆的离心率的取值范围为,1)故选:D【点评】本题考查椭圆的简单性质,涉及余弦定理和不等式的性质以及分类讨论的思想,属中档题7 【答案】C【解析】由已知等式,得,由正弦定理,得,则,所以,故选C8 【答案】C【解析】解:命题p是一个特称命题,它的否定是全称命题,p是全称命题,所以正确根据逆否命题的定义可知正确故选C【点评】考查特称命题,全称命题,和逆否命题的概念9 【答案】B【解析】解:P=x|x=3,M=x|x1;PM故选B10【答案】B【解析】解:ABC是锐角三角形,A+B,AB,sinAsin(B)=cosB,sinAcosB0,同理可得sinAcosC0,点P在第二象限故选:B11【答案】C【解析】当时,所以,故选C12【答案】D【解析】由切线性质知,所以,则由,得,化简得,即点的轨迹方程,故选D,二、填空题13【答案】 【解析】解:对于,把函数y=sin(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x),故正确对于,当,是第一象限角且,如=30,=390,则此时有cos=cos=,故错误对于,当x=时,2x+=,函数y=cos(2x+)=1,为函数的最小值,故x=是函数y=cos(2x+)的一条对称轴,故正确对于,函数y=4sin(2x+)=4cos(2x+)=4cos(2)=4cos(2x),故函数y=4sin(2x+)与函数y=4cos(2x)相同,故正确对于,在上,2x,函数y=2sin(2x)在上没有单调性,故错误,故答案为:14【答案】4 【解析】解:作出不等式组对应的平面区域,则的几何意义为区域内的点到原点的斜率,由图象可知,OC的斜率最小,由,解得,即C(4,1),此时=4,故的最小值为4,故答案为:4【点评】本题主要考查线性规划的应用,利用直线斜率的定义以及数形结合是解决本题的关键15【答案】2【解析】16【答案】5【解析】二项式定理【专题】计算题【分析】要想使已知展开式中没有常数项,需(x)n(nN+)的展开式中无常数项、x1项、x2项,利用(x)n(nN+)的通项公式讨论即可【解答】解:设(x)n(nN+)的展开式的通项为Tr+1,则Tr+1=xnrx3r=xn4r,2n8,当n=2时,若r=0,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;当n=3时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n3;当n=4时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n4;当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(nN+)的展开式中均没有常数项,故n=5适合题意;当n=6时,若r=1,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n6;当n=7时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n7;当n=8时,若r=2,(1+x+x2)(x)n(nN+)的展开式中有常数项,故n2;综上所述,n=5时,满足题意故答案为:5【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题17【答案】 【解析】解:根据点A,B的极坐标分别是(2,),(3,),可得A、B的直角坐标分别是(3,)、(,),故AB的斜率为,故直线AB的方程为 y=(x3),即x+3y12=0,所以O点到直线AB的距离是=,故答案为:【点评】本题主要考查把点的极坐标化为直角坐标的方法,点到直线的距离公式的应用,属于基础题18【答案】,. 【解析】,而,当且仅当与方向相同时等号成立,故填:,.三、解答题19【答案】 【解析】解:(1) =1i (2)a(1+i)+b=1i,即a+b+ai=1i,解得a=1,b=2【点评】该题考查复数代数形式的乘除运算、复数的基本概念,属基础题,熟记相关概念是解题关键20【答案】(1);(2)【解析】试题分析:(1)由,所以是等差数列且,即可求解数列的通项公式;(2)由(1)令,得,当时,;当时,;当时,即可分类讨论求解数列当时,.1考点:等差数列的通项公式;数列的求和21【答案】(1);(2)【解析】考点:旋转体的概念;旋转体的表面积、体积.22【答案】(1);(2)【解析】试题解析:(1)连接,由是正方体,知为平行四边形,所以,从而与所成的角就是与所成的角由可知,即与所成的角为考点:异面直线的所成的角【方法点晴】本题主要考查了异面直线所成的角的求解,其中解答中涉及到异面直线所成角的概念、三角形中位线与正方形的性质、正方体的结构特征等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,本题的解答中根据异面直线所成角的概念确定异面直线所成的角是解答的关键,属于中档试题23【答案】 【解析】解:()处应填入=T=,即,从而得到f(x)的值域为(),又0A,得,由余弦定理得a2=b2+c22bccosA=(b+c)23bc,即,bc=3ABC的面积【点评】本小题主要考查三角函数的图象与性质、两角和与差的三角函数、解三角形等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题24【答案】(1),其中.(2)时,【解析】试题分析:(1)求梯形铁片的面积关键是用表示上下底及高,先由图
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年人保财险陕西省分公司招聘(57人)模拟试卷及答案详解(全优)
- 2025年衢州市卫生健康委员会“引才聚智‘医’起向未来”医疗卫生人才招聘78人考前自测高频考点模拟试题及参考答案详解
- 2025广东深圳市服务高质量发展专项招录紧缺专业公务员486人考前自测高频考点模拟试题附答案详解(典型题)
- 2025江西职业技术大学高层次人才招聘51人考前自测高频考点模拟试题有答案详解
- 2025国网冀北电力有限公司第二批高校毕业生录用人选的考前自测高频考点模拟试题附答案详解(突破训练)
- 2025广东省江门市蓬江区教师招聘23人考前自测高频考点模拟试题及答案详解(有一套)
- 2025北京化工大学化办公室(中心)招聘1人模拟试卷及答案详解(夺冠系列)
- 2025春季国家电投广东公司校园招聘模拟试卷及答案详解(名校卷)
- 2025河北省地震局事业单位招聘工作人员1人(第二批)考前自测高频考点模拟试题及答案详解(典优)
- 2025江西人力诚聘派驻江西江铜华东铜箔有限公司劳务派遣人员14人模拟试卷及一套答案详解
- 金华兰溪市卫生健康局所属事业单位招聘笔试真题2024
- 国务院便民服务管理办法
- 甘肃省医疗建设管理办法
- 胸痛的护理教学课件
- 《中国高血压防治指南(2024年修订版)》解读课件
- DIEP乳房重建术后的护理指南
- GB/T 17643-2025土工合成材料聚乙烯土工膜
- 艺术漆涂料施工合同协议
- 陈皮种植转让合同协议
- 小学科学教科版六年级上册全册教案(共28课)2021年
- 预防青少年药物滥用-主题班会课件
评论
0/150
提交评论