




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
靖安县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 已知函数f(x)=x26x+7,x(2,5的值域是( )A(1,2B(2,2C2,2D2,1)2 如果对定义在上的函数,对任意,均有成立,则称函数为“函数”.给出下列函数:;其中函数是“函数”的个数为( )A1 B2 C3 D 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大3 如图,棱长为的正方体中,是侧面对角线上一点,若 是菱形,则其在底面上投影的四边形面积( ) A B C. D4 设集合A=x|x2|2,xR,B=y|y=x2,1x2,则R(AB)等于( )ARBx|xR,x0C0D5 垂直于同一条直线的两条直线一定( )A平行B相交C异面D以上都有可能6 由直线与曲线所围成的封闭图形的面积为( )AB1CD7 独立性检验中,假设H0:变量X与变量Y没有关系则在H0成立的情况下,估算概率P(K26.635)0.01表示的意义是( )A变量X与变量Y有关系的概率为1%B变量X与变量Y没有关系的概率为99%C变量X与变量Y有关系的概率为99%D变量X与变量Y没有关系的概率为99.9%8 已知a=()2,b=log5,c=log53,则a,b,c的大小关系是( )AabcBcabCacbDcba9 若P是以F1,F2为焦点的椭圆=1(ab0)上的一点,且=0,tanPF1F2=,则此椭圆的离心率为( )ABCD 10执行如图所示的程序,若输入的,则输出的所有的值的和为( )A243B363C729D1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力11若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为( )A2tB2tC2tD2t12设0ab且a+b=1,则下列四数中最大的是( )Aa2+b2B2abCaD二、填空题13用“”或“”号填空:30.830.714【盐城中学2018届高三上第一次阶段性考试】已知函数有两个极值点,则实数的取值范围是15图中的三个直角三角形是一个体积为的几何体的三视图,则_.16阅读如图所示的程序框图,运行相应的程序,若输入的X的值为2,则输出的结果是17如果定义在R上的函数f(x),对任意x1x2都有x1f(x1)+x2f(x2)x1f(x2)+x2(fx1),则称函数为“H函数”,给出下列函数f(x)=3x+1 f(x)=()x+1f(x)=x2+1 f(x)=其中是“H函数”的有(填序号)18抛物线y2=8x上一点P到焦点的距离为10,则P点的横坐标为三、解答题19已知f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线与直线6x+2y+5=0平行(1)求函数的单调区间;(2)若x1,3时,f(x)14c2恒成立,求实数c的取值范围 20(本小题满分12分)已知函数,数列满足:,().(1)求数列的通项公式;(2)设数列的前项和为,求数列的前项和.【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.21对于任意的nN*,记集合En=1,2,3,n,Pn=若集合A满足下列条件:APn;x1,x2A,且x1x2,不存在kN*,使x1+x2=k2,则称A具有性质如当n=2时,E2=1,2,P2=x1,x2P2,且x1x2,不存在kN*,使x1+x2=k2,所以P2具有性质()写出集合P3,P5中的元素个数,并判断P3是否具有性质()证明:不存在A,B具有性质,且AB=,使E15=AB()若存在A,B具有性质,且AB=,使Pn=AB,求n的最大值 22如图,已知椭圆C: +y2=1,点B坐标为(0,1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上()求直线AB的方程()若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OMON为定值23如图,四棱锥中,为线段上一点,为的中点(1)证明:平面;(2)求直线与平面所成角的正弦值;24(本题满分12分)在中,已知角所对的边分别是,边,且,又的面积为,求的值靖安县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】C【解析】解:由f(x)=x26x+7=(x3)22,x(2,5当x=3时,f(x)min=2当x=5时,函数f(x)=x26x+7,x(2,5的值域是2,2故选:C2 【答案】第3 【答案】B【解析】试题分析:在棱长为的正方体中,设,则,解得,即菱形的边长为,则在底面上的投影四边形是底边为,高为的平行四边形,其面积为,故选B.考点:平面图形的投影及其作法.4 【答案】B【解析】解:A=0,4,B=4,0,所以AB=0,R(AB)=x|xR,x0,故选B5 【答案】D【解析】解:分两种情况:在同一平面内,垂直于同一条直线的两条直线平行;在空间内垂直于同一条直线的两条直线可以平行、相交或异面故选D【点评】本题主要考查在空间内两条直线的位置关系6 【答案】D【解析】由定积分知识可得,故选D。7 【答案】C【解析】解:概率P(K26.635)0.01,两个变量有关系的可信度是10.01=99%,即两个变量有关系的概率是99%,故选C【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题8 【答案】C【解析】解:a=()2=52=251,b=log50,c=log53(0,1),故acb,故选:C【点评】本题主要考查对数的大小比较,根据对数和指数的运算性质是解决本题的关键9 【答案】A【解析】解:,即PF1F2是P为直角顶点的直角三角形RtPF1F2中,=,设PF2=t,则PF1=2t=2c,又根据椭圆的定义,得2a=PF1+PF2=3t此椭圆的离心率为e=故选A【点评】本题给出椭圆的一个焦点三角形为直角三角形,根据一个内角的正切值,求椭圆的离心率,着重考查了椭圆的基本概念和简单几何性质,属于基础题10【答案】D【解析】当时,是整数;当时,是整数;依次类推可知当时,是整数,则由,得,所以输出的所有的值为3,9,27,81,243,729,其和为1092,故选D11【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M(2,1),则由图象知A,B两点在直线两侧和在直线上即可,即2(t+2)+t2(t+1)+3(t+2)+t0,即(3t+4)(2t+4)0,解得2t,即实数t的取值范围为是2,故选:C【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键综合性较强,属于中档题12【答案】A【解析】解:0ab且a+b=12b12aba=a(2b1)0,即2aba又a2+b22ab=(ab)20a2+b22ab最大的一个数为a2+b2故选A二、填空题13【答案】 【解析】解:y=3x是增函数,又0.80.7,30.830.7故答案为:【点评】本题考查对数函数、指数函数的性质和应用,是基础题14【答案】.【解析】由题意,y=lnx+12mx令f(x)=lnx2mx+1=0得lnx=2mx1,函数有两个极值点,等价于f(x)=lnx2mx+1有两个零点,等价于函数y=lnx与y=2mx1的图象有两个交点,当m=时,直线y=2mx1与y=lnx的图象相切,由图可知,当0m时,y=lnx与y=2mx1的图象有两个交点,则实数m的取值范围是(0,),故答案为:(0,).15【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱底面,且为直角三角形,且,所以三棱锥的体积为,解得.考点:几何体的三视图与体积.16【答案】3 【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值当x=2时,f(x)=122=3故答案为:3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视17【答案】 【解析】解:对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)x1f(x2)+x2f(x1)恒成立,不等式等价为(x1x2)f(x1)f(x2)0恒成立,即函数f(x)是定义在R上的不减函数(即无递减区间);f(x)在R递增,符合题意;f(x)在R递减,不合题意;f(x)在(,0)递减,在(0,+)递增,不合题意;f(x)在R递增,符合题意;故答案为:18【答案】8 【解析】解:抛物线y2=8x=2px,p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,|MF|=x+=x+2=10,x=8,故答案为:8【点评】活用抛物线的定义是解决抛物线问题最基本的方法抛物线上的点到焦点的距离,叫焦半径到焦点的距离常转化为到准线的距离求解三、解答题19【答案】 【解析】解:(1)由题意:f(x)=3x2+6ax+3b 直线6x+2y+5=0的斜率为3;由已知所以(3分)所以由f(x)=3x26x0得心x0或x2;所以当x(0,2)时,函数单调递减;当x(,0),(2,+)时,函数单调递增(6分)(2)由(1)知,函数在x(1,2)时单调递减,在x(2,3)时单调递增;所以函数在区间1,3有最小值f(2)=c4要使x1,3,f(x)14c2恒成立只需14c2c4恒成立,所以c或c1故c的取值范围是c|c或c1(12分)【点评】本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于中档题20【答案】【解析】(1),. 即,所以数列是以首项为2,公差为2的等差数列, . (5分)(2)数列是等差数列,. (8分). (12分)21【答案】【解析】解:()对于任意的nN*,记集合En=1,2,3,n,Pn=集合P3,P5中的元素个数分别为9,23,集合A满足下列条件:APn;x1,x2A,且x1x2,不存在kN*,使x1+x2=k2,则称A具有性质,P3不具有性质.证明:()假设存在A,B具有性质,且AB=,使E15=AB其中E15=1,2,3,15因为1E15,所以1AB,不妨设1A因为1+3=22,所以3A,3B同理6A,10B,15A因为1+15=42,这与A具有性质矛盾所以假设不成立,即不存在A,B具有性质,且AB=,使E15=AB.解:()因为当n15时,E15Pn,由()知,不存在A,B具有性质,且AB=,使Pn=AB若n=14,当b=1时,取A1=1,2,4,6,9,11,13,B1=3,5,7,8,10,12,14,则A1,B1具有性质,且A1B1=,使E14=A1B1当b=4时,集合中除整数外,其余的数组成集合为,令,则A2,B2具有性质,且A2B2=,使当b=9时,集中除整数外,其余的数组成集合,令,则A3,B3具有性质,且A3B3=,使集合中的数均为无理数,它与P14中的任何其他数之和都不是整数,因此,令A=A1A2A3C,B=B1B2B3,则AB=,且P14=AB综上,所求n的最大值为14.【点评】本题考查集合性质的应用,考查实数值最大值的求法,综合性强,难度大,对数学思维要求高,解题时要认真审题,注意分类讨论思想的合理运用22【答案】 【解析】()解:设点E(t,t),B(0,1),A(2t,2t+1),点A在椭圆C上,整理得:6t2+4t=0,解得t=或t=0(舍去),E(,),A(,),直线AB的方程为:x+2y+2=0;()证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:xM=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:xN=,OMON=|xM|xN|=2|=|=|=|=【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题23【答案】(1)证明见解析;(2).【解析】试题解析:(2)在三角形中,由,得,则,底面平面,平面平面,且平面平面,平面,则平面平面,在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论