




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷东港区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 在中,则等于( )A B C或 D22 已知命题p:xR,2x3x;命题q:xR,x3=1x2,则下列命题中为真命题的是( )ApqBpqCpqDpq3 若数列an的通项公式an=5()2n24()n1(nN*),an的最大项为第p项,最小项为第q项,则qp等于( )A1B2C3D44 已知,其中是虚数单位,则的虚部为( )A B C D【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.5 甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如表所示:甲乙丙丁平均环数x8.7方差ss5.4从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是( )A甲B乙C丙D丁6 已知一三棱锥的三视图如图所示,那么它的体积为( )A B C D7 设函数,若对任意,都存在,使得,则实数的最大值为( )A B C. D48 已知正三棱柱的底面边长为,高为,则一质点自点出发,沿着三棱柱的侧面,绕行两周到达点的最短路线的长为( )A B C D9 已知双曲线,分别在其左、右焦点,点为双曲线的右支上的一点,圆为三角形的内切圆,所在直线与轴的交点坐标为,与双曲线的一条渐近线平行且距离为,则双曲线的离心率是( )A B2 C D10在正方体8个顶点中任选3个顶点连成三角形,则所得的三角形是等腰直角三角形的概率为( )ABCD11复数z=在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限12设函数f(x)的定义域为A,若存在非零实数l使得对于任意xI(IA),有x+lA,且f(x+l)f(x),则称f(x)为I上的l高调函数,如果定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2,且函数f(x)为R上的1高调函数,那么实数a的取值范围为( )A0a1BaC1a1D2a2二、填空题13已知a=(cosxsinx)dx,则二项式(x2)6展开式中的常数项是14用描述法表示图中阴影部分的点(含边界)的坐标的集合为15设函数f(x)=,则f(f(2)的值为16在ABC中,已知=2,b=2a,那么cosB的值是17正方体ABCDA1B1C1D1中,平面AB1D1和平面BC1D的位置关系为18函数的定义域是,则函数的定义域是_.111三、解答题19已知集合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0(1)求AB(2)若AC=C,求实数m的取值范围20某校高一数学兴趣小组开展竞赛前摸底考试甲、乙两人参加了5次考试,成绩如下:第一次第二次第三次第四次第五次甲的成绩8287868090乙的成绩7590917495()若从甲、乙两人中选出1人参加比赛,你认为选谁合适?写出你认为合适的人选并说明理由;()若同一次考试成绩之差的绝对值不超过5分,则称该次考试两人“水平相当”由上述5次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当”的概率21已知f(x)=x23ax+2a2(1)若实数a=1时,求不等式f(x)0的解集;(2)求不等式f(x)0的解集22【启东中学2018届高三上学期第一次月考(10月)】设,函数.(1)证明在上仅有一个零点;(2)若曲线在点处的切线与轴平行,且在点处的切线与直线平行,(O是坐标原点),证明:23设f(x)=2x3+ax2+bx+1的导数为f(x),若函数y=f(x)的图象关于直线x=对称,且f(1)=0()求实数a,b的值()求函数f(x)的极值24甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2个、3个、4个,乙袋中红色、黑色、白色小球的个数均为3个,某人用左右手分别从甲、乙两袋中取球(1)若左右手各取一球,问两只手中所取的球颜色不同的概率是多少?(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为X,求X的分布列和数学期望东港区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】考点:余弦定理2 【答案】B【解析】解:因为x=1时,2131,所以命题p:xR,2x3x为假命题,则p为真命题令f(x)=x3+x21,因为f(0)=10,f(1)=10所以函数f(x)=x3+x21在(0,1)上存在零点,即命题q:xR,x3=1x2为真命题则pq为真命题故选B3 【答案】A【解析】解:设=t(0,1,an=5()2n24()n1(nN*),an=5t24t=,an,当且仅当n=1时,t=1,此时an取得最大值;同理n=2时,an取得最小值qp=21=1,故选:A【点评】本题考查了二次函数的单调性、指数函数的单调性、数列的通项公式,考查了推理能力与计算能力,属于中档题4 【答案】B【解析】由复数的除法运算法则得,所以的虚部为.5 【答案】C【解析】解:甲、乙、丙、丁四人的平均环数乙和丙均为8.8环,最大,甲、乙、丙、丁四人的射击环数的方差中丙最小,丙的射击水平最高且成绩最稳定,从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是丙故选:C【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价6 【答案】 B 【解析】解析:本题考查三视图与几何体的体积的计算如图该三棱锥是边长为的正方体中的一个四面体,其中,该三棱锥的体积为,选B7 【答案】A111.Com【解析】试题分析:设的值域为,因为函数在上的值域为,所以,因此至少要取遍中的每一个数,又,于是,实数需要满足或,解得考点:函数的性质.【方法点晴】本题主要考查函数的性质用,涉及数形结合思想、函数与方程思想、转和化化归思想,考查逻辑推理能力、化归能力和计算能力,综合程度高,属于较难题型。首先求出,再利用转化思想将命题条件转化为,进而转化为至少要取遍中的每一个数,再利用数形结合思想建立不等式组:或,从而解得8 【答案】D【解析】考点:多面体的表面上最短距离问题【方法点晴】本题主要考查了多面体和旋转体的表面上的最短距离问题,其中解答中涉及到多面体与旋转体的侧面展开图的应用、直角三角形的勾股定理的应用等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,学生的空间想象能力、以及转化与化归思想的应用,试题属于基础题9 【答案】C【解析】试题分析:由题意知到直线的距离为,那么,得,则为等轴双曲线,离心率为.故本题答案选C. 1考点:双曲线的标准方程与几何性质【方法点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造的关系,处理方法与椭圆相同,但需要注意双曲线中与椭圆中的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出的值,可得;(2)建立的齐次关系式,将用表示,令两边同除以或化为的关系式,解方程或者不等式求值或取值范围.10【答案】C【解析】解:正方体8个顶点中任选3个顶点连成三角形,所得的三角形是等腰直角三角形只能在各个面上,在每一个面上能组成等腰直角三角形的有四个,所以共有46=24个,而在8个点中选3个点的有C83=56,所以所求概率为=故选:C【点评】本题是一个古典概型问题,学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题11【答案】A【解析】解:z=+i,复数z在复平面上对应的点位于第一象限故选A【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具12【答案】 B【解析】解:定义域为R的函数f(x)是奇函数,当x0时,f(x)=|xa2|a2=图象如图,f(x)为R上的1高调函数,当x0时,函数的最大值为a2,要满足f(x+l)f(x),1大于等于区间长度3a2(a2),13a2(a2),a故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题二、填空题13【答案】240 【解析】解:a=(cosxsinx)dx=(sinx+cosx)=11=2,则二项式(x2)6=(x2+)6展开始的通项公式为Tr+1=2rx123r,令123r=0,求得r=4,可得二项式(x2)6展开式中的常数项是24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题14【答案】(x,y)|xy0,且1x2,y1 【解析】解:图中的阴影部分的点设为(x,y)则x,y)|1x0,y0或0x2,0y1=(x,y)|xy0且1x2,y1故答案为:(x,y)|xy0,且1x2,y115【答案】4 【解析】解:函数f(x)=,f(2)=42=,f(f(2)=f()=4故答案为:416【答案】 【解析】解: =2,由正弦定理可得:,即c=2ab=2a,=cosB=故答案为:【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题17【答案】平行 【解析】解:AB1C1D,AD1BC1,AB1平面AB1D1,AD1平面AB1D1,AB1AD1=AC1D平面BC1D,BC1平面BC1D,C1DBC1=C1由面面平行的判定理我们易得平面AB1D1平面BC1D故答案为:平行【点评】本题考查的知识点是平面与平面之间的位置关系,在判断线与面的平行与垂直关系时,正方体是最常用的空间模型,大家一定要熟练掌握这种方法18【答案】【解析】考点:函数的定义域.三、解答题19【答案】 【解析】解:由合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0A=x|1x6,C=x|mxm+9(1),(2)由AC=C,可得AC即,解得3m120【答案】 【解析】解:()解法一:依题意有, 答案一:从稳定性角度选甲合适(注:按()看分数的标准,5次考试,甲三次与乙相当,两次优于乙,所以选甲合适答案二:乙的成绩波动大,有爆发力,选乙合适解法二:因为甲5次摸底考试成绩中只有1次90,甲摸底考试成绩不低于90的概率为;乙5次摸底考试成绩中有3次不低于90,乙摸底考试成绩不低于90的概率为 所以选乙合适 ()依题意知5次摸底考试,“水平相当”考试是第二次,第三次,第五次,记为A,B,C“水平不相当”考试是第一次,第四次,记为a,b从这5次摸底考试中任意选取2次有ab,aA,aB,aC,bA,bB,bC,AB,AC,BC共10种情况恰有一次摸底考试两人“水平相当”包括共aA,aB,aC,bA,bB,bC共6种情况5次摸底考试成绩统计,任意抽查两次摸底考试,恰有一次摸底考试两人“水平相当”概率【点评】本题主要考查平均数,方差,概率等基础知识,运算数据处理能力、运算求解能力、应用意识,考查化归转化思想、或然与必然思想21【答案】 【解析】解:(1)当a=1时,依题意得x23x+20因式分解为:(x2)(x1)0,解得:x1或x21x2不等式的解集为x|1x2(2)依题意得x23ax+2a20(xa)(x2a)0对应方程(xa)(x2a)=0得x1=a,x2=2a当a=0时,x当a0时,a2a,ax2a;当a0时,a2a,2axa;综上所述,当a=0时,原不等式的解集为;当a0时,原不等式的解集为x|ax2a;当a0时,原不等式的解集为x|2axa;22【答案】(1)在上有且只有一个零点(2)证明见解析【解析】试题分析:试题解析:(1),在上为增函数,又,即,由零点存在性定理可知,在上为增函数,且,在上仅有一个零点。(2),设点,则,在点处的切线与轴平行,点处切线与直线平行,点处切线的斜率,又题目需证明,即,则只需证明,即。令,则,易知,当时,单调递减,当时,单调递增,即,得证。23【答案】 【解析】解:()因f(x)=2x3+ax2+bx+1,故f(x)=6x2+2ax+b从而f(x)=6y=f(x)关于直线x=对称,从而由条件可知=,解得a=3又由于f(x)=0,即6+2a+b=0,解得b=12()由()知f(x)=2x3+3x212x+1f(x)=6x2+6x12=6(x1)(x+2)令f(x)=0,得x=1或x=2当x(,2)时,f(x)0,f(x)在(,2)上是增函数;当x(2,1)时,f(x)0,f(x)在(2,1)上是减函数;当x(1,+)时,f(x)0,f(x)在(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025湖北恩施州巴东县绿葱坡镇人民政府公益性岗位招聘4人考前自测高频考点模拟试题及答案详解(必刷)
- 2025年长春中医药大学附属医院二道医院(院区)招聘(1号)(含专项招聘高校毕业生)(220人)考前自测高频考点模拟试题及答案详解(网校专用)
- 2025年甘肃武威古浪县八步沙林场招聘财会、水利专业人员考前自测高频考点模拟试题含答案详解
- 2025黑龙江哈尔滨宾县公安局招聘警务辅助人员32人考前自测高频考点模拟试题及一套参考答案详解
- 2025年4月广东广州市天河区珠江新城猎德幼儿园编外教辅人员招聘2人模拟试卷附答案详解(考试直接用)
- 2025昆明市官渡区北京八十学校招聘(18人)模拟试卷及答案详解一套
- 2025宝鸡市某医院招聘药学专技人员(3人)考前自测高频考点模拟试题附答案详解(模拟题)
- 2025年河北沧州任丘园区产业发展集团有限公司招聘工作人员10名考前自测高频考点模拟试题及答案详解(考点梳理)
- 2025福建厦门启航培训服务有限公司招聘1人考前自测高频考点模拟试题及答案详解(网校专用)
- 2025内蒙古自治区阿尔山市属国有企业外部董事拟进入人员模拟试卷有答案详解
- 2025年云南交投集团校园招聘管理人员86人笔试参考题库附带答案详解
- 2025年小学语文一年级第一学期期中测试试卷
- 2025年6月上海市高考语文试题卷(含答案)
- 码头突发事件培训
- 2024年湖南省龙山县卫生系统招聘考试(护理学专业知识)题含答案
- 热点地区物种多样性保护-洞察及研究
- 2025菏投热电(巨野)有限公司面向市属企业(内部)选聘运维人员60人笔试参考题库附带答案详解(10套)
- 黑龙江介绍课件
- 2025至2030中国汽车A柱行业项目调研及市场前景预测评估报告
- 2026年高考英语专题复习:必背近10高考英语高频词汇表
- 呼吸心跳骤停病人的护理查房
评论
0/150
提交评论