




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青川县高级中学2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 “x24x0”的一个充分不必要条件为( )A0x4B0x2Cx0Dx42 函数在一个周期内的图象如图所示,此函数的解析式为( )A B C D3 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A4320B2400C2160D13204 已知集合A,B,C中,AB,AC,若B=0,1,2,3,C=0,2,4,则A的子集最多有( )A2个B4个C6个D8个5 设函数f(x)在x0处可导,则等于( )Af(x0)Bf(x0)Cf(x0)Df(x0)6 如图,正方体ABCDA1B1C1D1的棱线长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥ABEF的体积为定值D异面直线AE,BF所成的角为定值7 运行如图所示的程序框图,输出的所有实数对(x,y)所对应的点都在某函数图象上,则该函数的解析式为( )Ay=x+2By=Cy=3xDy=3x38 已知锐角ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=( )A10B9C8D59 有下列说法:在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适相关指数R2来刻画回归的效果,R2值越小,说明模型的拟合效果越好比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好其中正确命题的个数是( )A0B1C2D310设抛物线C:y2=2px(p0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )Ay2=4x或y2=8xBy2=2x或y2=8xCy2=4x或y2=16xDy2=2x或y2=16x11若f(x)=x2+2ax与g(x)=在区间1,2上都是减函数,则a的取值范围是( )A(,1B0,1C(2,1)(1,1D(,2)(1,112复数z=(其中i是虚数单位),则z的共轭复数=( )AiBiC +iD +i二、填空题13若函数为奇函数,则_【命题意图】本题考查函数的奇偶性,意在考查方程思想与计算能力14若在圆C:x2+(ya)2=4上有且仅有两个点到原点O距离为1,则实数a的取值范围是15如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率是16已知为常数,若,则_.17的展开式中,常数项为_(用数字作答)【命题意图】本题考查用二项式定理求指定项,基础题.18如图,ABC是直角三角形,ACB=90,PA平面ABC,此图形中有个直角三角形三、解答题19已知椭圆E的长轴的一个端点是抛物线y2=4x的焦点,离心率是(1)求椭圆E的标准方程;(2)已知动直线y=k(x+1)与椭圆E相交于A、B两点,且在x轴上存在点M,使得与k的取值无关,试求点M的坐标 20如图,在四棱锥PABCD中,底面ABCD为等腰梯形,ADBC,PA=AB=BC=CD=2,PD=2,PAPD,Q为PD的中点()证明:CQ平面PAB;()若平面PAD底面ABCD,求直线PD与平面AQC所成角的正弦值21在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为cos()=1,M,N分别为C与x轴,y轴的交点(1)写出C的直角坐标方程,并求M,N的极坐标;(2)设MN的中点为P,求直线OP的极坐标方程22已知函数f(x)=alnx+x2+bx+1在点(1,f(1)处的切线方程为4xy12=0(1)求函数f(x)的解析式;(2)求f(x)的单调区间和极值23已知等差数列an的前n项和为Sn,公差d0,S2=4,且a2,a5,a14成等比数列()求数列an的通项公式;()从数列an中依次取出第2项,第4项,第8项,第2n项,按原来顺序组成一个新数列bn,记该数列的前n项和为Tn,求Tn的表达式24已知ab0,求证:青川县高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:不等式x24x0整理,得x(x4)0不等式的解集为A=x|0x4,因此,不等式x24x0成立的一个充分不必要条件,对应的x范围应该是集合A的真子集写出一个使不等式x24x0成立的充分不必要条件可以是:0x2,故选:B2 【答案】B【解析】考点:三角函数的图象与性质3 【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有=388,第二组(1,1,2,2),利用间接法,有()=932根据分类计数原理,可得388+932=1320种,故选D【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题4 【答案】B【解析】解:因为B=0,1,2,3,C=0,2,4,且AB,AC;ABC=0,2集合A可能为0,2,即最多有2个元素,故最多有4个子集故选:B5 【答案】C【解析】解: =f(x0),故选C6 【答案】 D【解析】解:在正方体中,ACBD,AC平面B1D1DB,BE平面B1D1DB,ACBE,故A正确;平面ABCD平面A1B1C1D1,EF平面A1B1C1D1,EF平面ABCD,故B正确;EF=,BEF的面积为定值EF1=,又AC平面BDD1B1,AO为棱锥ABEF的高,三棱锥ABEF的体积为定值,故C正确;利用图形设异面直线所成的角为,当E与D1重合时sin=,=30;当F与B1重合时tan=,异面直线AE、BF所成的角不是定值,故D错误;故选D7 【答案】 C【解析】解:模拟程序框图的运行过程,得;该程序运行后输出的是实数对(1,3),(2,9),(3,27),(4,81);这组数对对应的点在函数y=3x的图象上故选:C【点评】本题考查了程序框图的应用问题,是基础题目8 【答案】D【解析】解:23cos2A+cos2A=23cos2A+2cos2A1=0,即cos2A=,A为锐角,cosA=,又a=7,c=6,根据余弦定理得:a2=b2+c22bccosA,即49=b2+36b,解得:b=5或b=(舍去),则b=5故选D9 【答案】C【解析】解:在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确相关指数R2来刻画回归的效果,R2值越大,说明模型的拟合效果越好,因此不正确比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确综上可知:其中正确命题的是故选:C【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题10【答案】 C【解析】解:抛物线C方程为y2=2px(p0),焦点F坐标为(,0),可得|OF|=,以MF为直径的圆过点(0,2),设A(0,2),可得AFAM,RtAOF中,|AF|=,sinOAF=,根据抛物线的定义,得直线AO切以MF为直径的圆于A点,OAF=AMF,可得RtAMF中,sinAMF=,|MF|=5,|AF|=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x故选:C方法二:抛物线C方程为y2=2px(p0),焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5,4),代入抛物线方程得p210p+16=0,所以p=2或p=8所以抛物线C的方程为y2=4x或y2=16x故答案C【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题11【答案】D【解析】解:函数f(x)=x2+2ax的对称轴为x=a,开口向下,单调间区间为a,+)又f(x)在区间1,2上是减函数,a1函数g(x)=在区间(,a)和(a,+)上均为减函数,g(x)=在区间1,2上是减函数,a2,或a1,即a2,或a1,综上得a(,2)(1,1,故选:D【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围12【答案】C【解析】解:z=,=故选:C【点评】本题考查了复数代数形式的乘除运算,是基础题二、填空题13【答案】2016【解析】因为函数为奇函数且,则由,得,整理,得14【答案】3a1或1a3 【解析】解:根据题意知:圆x2+(ya)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,两圆圆心距d=|a|,21|a|2+1,3a1或1a3故答案为:3a1或1a3【点评】本题体现了转化的数学思想,解题的关键在于将问题转化为:圆x2+(ya)2=4和以原点为圆心,1为半径的圆x2+y2=1相交,属中档题15【答案】 【解析】解:由题意ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题16【答案】【解析】试题分析:由,得,即,比较系数得,解得或,则.考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属于中档试题,本题的解答中化简的解析式是解答的关键.17【答案】【解析】的展开式通项为,所以当时,常数项为.18【答案】4 【解析】解:由PA平面ABC,则PAC,PAB是直角三角形,又由已知ABC是直角三角形,ACB=90所以BCAC,从而易得BC平面PAC,所以BCPC,所以PCB也是直角三角形,所以图中共有四个直角三角形,即:PAC,PAB,ABC,PCB故答案为:4【点评】本题考查空间几何体的结构特征,空间中点线面的位置关系,线面垂直的判定定理和性质定理的熟练应用是解答本题的关键三、解答题19【答案】【解析】解:(1)由题意,椭圆的焦点在x轴上,且a=,1分c=ea=,故b=,4分所以,椭圆E的方程为,即x2+3y2=56分(2)将y=k(x+1)代入方程E:x2+3y2=5,得(3k2+1)x2+6k2x+3k25=0;7分设A(x1,y1),B(x2,y2),M(m,0),则x1+x2=,x1x2=;8分=(x1m,y1)=(x1m,k(x1+1),=(x2m,y2)=(x2m,k(x2+1);=(k2+1)x1x2+(k2m)(x1+x2)+k2+m2=m2+2m,要使上式与k无关,则有6m+14=0,解得m=;存在点M(,0)满足题意13分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题20【答案】 【解析】()证明:取PA的中点N,连接QN,BNQ,N是PD,PA的中点,QNAD,且QN=ADPA=2,PD=2,PAPD,AD=4,BC=AD又BCAD,QNBC,且QN=BC,四边形BCQN为平行四边形,BNCQ又BN平面PAB,且CQ平面PAB,CQ平面PAB()解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO由()知PA=AM=PM=2,APM为等边三角形,POAM同理:BOAM平面PAD平面ABCD,平面PAD平面ABCD=AD,PO平面PAD,PO平面ABCD以O为坐标原点,分别以OB,OD,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,则D(0,3,0),A(0,1,0),P(0,0,),C(,2,0),Q(0,)=(,3,0),=(0,3,),=(0,)设平面AQC的法向量为=(x,y,z),令y=得=(3,5)cos,=直线PD与平面AQC所成角正弦值为21【答案】 【解析】解:()由从而C的直角坐标方程为即=0时,=2,所以M(2,0)()M点的直角坐标为(2,0)N点的直角坐标为所以P点的直角坐标为,则P点的极坐标为,所以直线OP的极坐标方程为,(,+)【点评】本题考查点的极坐标和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化22【答案】 【解析】解:(1)求导f(x)=+2x+b,由题意得:f(1)=4,f(1)=8,则,解得,所以f(x)=12lnx+x210x+1;(2)f(x)定义域为(0,+),f(x)=,令f(x)0,解得:x2或x3,所以f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 通讯电子技术试题及答案
- 2025商业地产租赁合同范本
- 2025年春季部编版初中数学教学设计八年级下册第1课时 菱形的性质
- 2025设备购买协议合同范本
- A1 自愿离婚协议书示范文本
- 知识题库-人社练兵比武劳动竞赛试题及答案(二十一)
- 公园出入口课件
- 《2025协商解除劳动合同协议》
- 搜课件模板app无删减
- 揭阳安全知识培训课件平台
- 个人信用征信服务合同
- 2025年水手理论考试题库
- 2025至2030年中国广州酒店行业市场全景调研及投资规划建议报告
- 第9课 让我们的学校更美好 第1课时(课件)2025-2026学年道德与法治三年级上册统编版
- 公路工程常规试验项目标准及检测频率取样方法全新盘点
- 稳定基金管理办法
- 2025年徐州市(中小学、幼儿园)教师招聘考试题库及答案
- 《中华医学会麻醉学分会.麻醉后监测治疗专家共识(2021版)》
- 数据安全管理员职业技能鉴定经典试题含答案
- 动设备培训课件
- 微多普勒技术用于低空公共安全治理的应用研究
评论
0/150
提交评论