




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷东昌区二中2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 四棱锥的底面为正方形,底面,若该四棱锥的所有顶点都在体积为同一球面上,则( )A3BCD【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力2 已知a,b是实数,则“a2bab2”是“”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件 3 利用斜二测画法得到的:三角形的直观图是三角形;平行四边形的直观图是平行四边形;正方形的直观图是正方形;菱形的直观图是菱形以上结论正确的是( )A B C D4 方程表示的曲线是( )A一个圆 B 两个半圆 C两个圆 D半圆5 设复数z满足z(1+i)=2(i为虚数单位),则z=( )A1iB1+iC1iD1+i6 某几何体的三视图如图所示(其中侧视图中的圆弧是半圆),则该几何体的表面积为( ) A20+2B20+3C24+3D24+37 设为虚数单位,则()A B C D8 函数f(x)=lnx+1的图象大致为( )ABCD9 对于函数f(x),若a,b,cR,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是( )ACD10已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( )A B C D11下列说法中正确的是( )A三点确定一个平面B两条直线确定一个平面C两两相交的三条直线一定在同一平面内D过同一点的三条直线不一定在同一平面内12设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f(x)的图象可能是( )ABCD二、填空题13若实数x,y满足x2+y22x+4y=0,则x2y的最大值为14一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为_15如图所示,正方体ABCDABCD的棱长为1,E、F分别是棱AA,CC的中点,过直线EF的平面分别与棱BB、DD交于M、N,设BM=x,x0,1,给出以下四个命题:平面MENF平面BDDB;当且仅当x=时,四边形MENF的面积最小;四边形MENF周长l=f(x),x0,1是单调函数;四棱锥CMENF的体积v=h(x)为常函数;以上命题中真命题的序号为16已知a,b是互异的负数,A是a,b的等差中项,G是a,b的等比中项,则A与G的大小关系为17设等差数列an的前n项和为Sn,若1a31,0a63,则S9的取值范围是18若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则k=三、解答题19已知函数f(x)=alnx+x2+bx+1在点(1,f(1)处的切线方程为4xy12=0(1)求函数f(x)的解析式;(2)求f(x)的单调区间和极值20已知mR,函数f(x)=(x2+mx+m)ex(1)若函数f(x)没有零点,求实数m的取值范围;(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;(3)当m=0时,求证:f(x)x2+x321椭圆C: =1,(ab0)的离心率,点(2,)在C上(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M证明:直线OM的斜率与l的斜率的乘积为定值22实数m取什么数值时,复数z=m+1+(m1)i分别是:(1)实数?(2)虚数?(3)纯虚数?23已知正项等差an,lga1,lga2,lga4成等差数列,又bn=(1)求证bn为等比数列(2)若bn前3项的和等于,求an的首项a1和公差d24已知椭圆,过其右焦点F且垂直于x轴的弦MN的长度为b()求该椭圆的离心率;()已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于APQ,求该椭圆的方程东昌区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】连结交于点,取的中点,连结,则,所以底面,则到四棱锥的所有顶点的距离相等,即球心,均为,所以由球的体积可得,解得,故选B2 【答案】C【解析】解:由a2bab2得ab(ab)0,若ab0,即ab,则ab0,则成立,若ab0,即ab,则ab0,则a0,b0,则成立,若则,即ab(ab)0,即a2bab2成立,即“a2bab2”是“”的充要条件,故选:C【点评】本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键3 【答案】A【解析】考点:斜二测画法4 【答案】A【解析】试题分析:由方程,两边平方得,即,所以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.5 【答案】A【解析】解:z(1+i)=2,z=1i故选:A【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题6 【答案】B【解析】由已知中的三视图,可知该几何体是一个以侧视图为底面的柱体(一个半圆柱与正方体的组合体),其底面面积S=22+=4+,底面周长C=23+=6+,高为2,故柱体的侧面积为:(6+)2=12+2,故柱体的全面积为:12+2+2(4+)=20+3,故选:B【点评】本题考查的知识点是简单空间图象的三视图,其中根据已知中的视图分析出几何体的形状及棱长是解答的关键7 【答案】C【解析】【知识点】复数乘除和乘方【试题解析】故答案为:C8 【答案】A【解析】解:f(x)=lnx+1,f(x)=,f(x)在(0,4)上单调递增,在(4,+)上单调递减;且f(4)=ln42+1=ln410;故选A【点评】本题考查了导数的综合应用及函数的图象的应用9 【答案】D【解析】解:由题意可得f(a)+f(b)f(c)对于a,b,cR都恒成立,由于f(x)=1+,当t1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件当t10,f(x)在R上是减函数,1f(a)1+t1=t,同理1f(b)t,1f(c)t,由f(a)+f(b)f(c),可得 2t,解得1t2当t10,f(x)在R上是增函数,tf(a)1,同理tf(b)1,tf(c)1,由f(a)+f(b)f(c),可得 2t1,解得1t综上可得,t2,故实数t的取值范围是,2,故选D【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题10【答案】D【解析】试题分析:由已知,所以,则,令 ,得,可知D正确故选D考点:三角函数的对称性11【答案】D【解析】解:对A,当三点共线时,平面不确定,故A错误;对B,当两条直线是异面直线时,不能确定一个平面;故B错误;对C,两两相交且不共点的三条直线确定一个平面,当三条直线两两相交且共点时,不一定在同一个平面,如墙角的三条棱;故C错误;对D,由C可知D正确故选:D12【答案】D【解析】解:根据函数与导数的关系:可知,当f(x)0时,函数f(x)单调递增;当f(x)0时,函数f(x)单调递减结合函数y=f(x)的图象可知,当x0时,函数f(x)单调递减,则f(x)0,排除选项A,C当x0时,函数f(x)先单调递增,则f(x)0,排除选项B故选D【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题二、填空题13【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x2y,再利用z的几何意义求最值,只需求出直线z=x2y过图形上的点A的坐标,即可求解【解答】解:方程x2+y22x+4y=0可化为(x1)2+(y+2)2=5,即圆心为(1,2),半径为的圆,(如图)设z=x2y,将z看做斜率为的直线z=x2y在y轴上的截距,经平移直线知:当直线z=x2y经过点A(2,4)时,z最大,最大值为:10故答案为:1014【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体中,BC中点为E,CD中点为F,则截面为即截去一个三棱锥其体积为:所以该几何体的体积为:故答案为:15【答案】 【解析】解:连结BD,BD,则由正方体的性质可知,EF平面BDDB,所以平面MENF平面BDDB,所以正确连结MN,因为EF平面BDDB,所以EFMN,四边形MENF的对角线EF是固定的,所以要使面积最小,则只需MN的长度最小即可,此时当M为棱的中点时,即x=时,此时MN长度最小,对应四边形MENF的面积最小所以正确因为EFMN,所以四边形MENF是菱形当x0,时,EM的长度由大变小当x,1时,EM的长度由小变大所以函数L=f(x)不单调所以错误连结CE,CM,CN,则四棱锥则分割为两个小三棱锥,它们以CEF为底,以M,N分别为顶点的两个小棱锥因为三角形CEF的面积是个常数M,N到平面CEF的距离是个常数,所以四棱锥CMENF的体积V=h(x)为常函数,所以正确故答案为:【点评】本题考查空间立体几何中的面面垂直关系以及空间几何体的体积公式,本题巧妙的把立体几何问题和函数进行的有机的结合,综合性较强,设计巧妙,对学生的解题能力要求较高16【答案】AG 【解析】解:由题意可得A=,G=,由基本不等式可得AG,当且仅当a=b取等号,由题意a,b是互异的负数,故AG故答案是:AG【点评】本题考查等差中项和等比中项,涉及基本不等式的应用,属基础题17【答案】(3,21) 【解析】解:数列an是等差数列,S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=633a33,06a618,两式相加即得3S921S9的取值范围是(3,21)故答案为:(3,21)【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题18【答案】1或0 【解析】解:满足约束条件的可行域如下图阴影部分所示:kxy+10表示地(0,1)点的直线kxy+1=0下方的所有点(包括直线上的点)由关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,可得直线kxy+1=0与y轴垂直,此时k=0或直线kxy+1=0与y=x垂直,此时k=1综上k=1或0故答案为:1或0【点评】本题考查的知识点是二元一次不等式(组)与平面区域,其中根据已知分析出直线kxy+1=0与y轴垂直或与y=x垂直,是解答的关键三、解答题19【答案】 【解析】解:(1)求导f(x)=+2x+b,由题意得:f(1)=4,f(1)=8,则,解得,所以f(x)=12lnx+x210x+1;(2)f(x)定义域为(0,+),f(x)=,令f(x)0,解得:x2或x3,所以f(x)在(0,2)递增,在(2,3)递减,在(3,+)递增,故f(x)极大值=f(2)=12ln215,f(x)极小值=f(3)=12ln32020【答案】 【解析】解:(1)令f(x)=0,得(x2+mx+m)ex=0,所以x2+mx+m=0因为函数f(x)没有零点,所以=m24m0,所以0m4(2)f(x)=(2x+m)ex+(x2+mx+m)ex=(x+2)(x+m)ex,令f(x)=0,得x=2,或x=m,当m2时,m2列出下表:x(,m)m(m,2)2(2,+)f(x)+00+f(x)mem(4m)e2当x=m时,f(x)取得极大值mem当m=2时,f(x)=(x+2)2ex0,f(x)在R上为增函数,所以f(x)无极大值当m2时,m2列出下表:x(,2)2(2,m)m(m,+)f(x)+00+f(x)(4m)e2mem当x=2时,f(x)取得极大值(4m)e2,所以(3)当m=0时,f(x)=x2ex,令(x)=ex1x,则(x)=ex1,当x0时,(x)0,(x)为增函数;当x0时,(x)0,(x)为减函数,所以当x=0时,(x)取得最小值0所以(x)(0)=0,ex1x0,所以ex1+x,因此x2exx2+x3,即f(x)x2+x3【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键21【答案】 【解析】解:(1)椭圆C: =1,(ab0)的离心率,点(2,)在C上,可得,解得a2=8,b2=4,所求椭圆C方程为:(2)设直线l:y=kx+b,(k0,b0),A(x1,y1),B(x2,y2),M(xM,yM),把直线y=kx+b代入可得(2k2+1)x2+4kbx+2b28=0,故xM=,yM=kxM+b=,于是在OM的斜率为:KOM=,即KOMk=直线OM的斜率与l的斜率的乘积为定值【点评】本题考查椭圆方程的综合应用,椭圆的方程的求法,考查分析问题解决问题的能力22【答案】 【解析】解:(1)当m1=0,即m=1时,复数z是实数;(2)当m10,即m1时,复数z是虚数;(3)当m+1=0,且m10时,即m=1时,复数z 是纯虚数【点评】本题考查复数的概念,属于基础题23【答案】 【解析】(1)证明:设an中首项为a1,公差为dlga1,lga2,lga4成等差数列,2lga2=lga1+lga4,a22=a1a4即(a1+d)2=a1(a1+3d),d=0或d=a1当d=0时,an=a1,bn=, =1,bn为等比数列;当d=a1时,an=na1,bn=, =,bn为等比数列综上可知bn为等比数列(2)解:当d=0时,S3=,所以a1=;当d=a1时,S3=,故a1=3=d【点评】本题主要考查等差数列与等比数列的综合以及分类讨论思想的应用,涉及数列的公式多,复杂多样,故应多下点功夫记忆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 考点解析-江苏省句容市7年级上册期末测试卷专项攻克试题
- 公积金买房贷款合同
- 房地产部门年度总结与工作计划
- 网络安全应急演练-桌面推演脚本(2篇)
- 2025年老年科痴呆症护理情境模拟测验题答案及解析
- 2025年耳鼻喉科常见咽喉疾病诊断处理测试题答案及解析
- 基础强化华东师大版7年级下册期末试题及参考答案详解(满分必刷)
- 2026届山东省武城县第一中学化学高一上期末考试试题含解析
- 氯化炉工设备维护与保养考核试卷及答案
- 汽车色彩与个性化定制趋势创新创业项目商业计划书
- 乏力诊治与管理专家共识解读 2
- 2025亚洲杯男篮+《热血征程砥砺前行》课件-2025-2026学年高中励志主题班会
- GB/T 45817-2025消费品质量分级陶瓷砖
- JJG 693-2011可燃气体检测报警器
- 学校安全隐患排查整治表
- 四川省扶贫和移民工作局移民安置独立评估细则-范文
- 低压电工实操演示
- 工程项目管理课程设计实例
- 中医运动养生PPT课件
- 用友U8ERP模块功能介绍
- 支撑切割施工方案A版
评论
0/150
提交评论