




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
周至县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 直线2x+y+7=0的倾斜角为()A锐角B直角C钝角D不存在2 某三棱锥的三视图如图所示,该三棱锥的体积是( )A 2 B4 C D【命题意图】本题考查三视图的还原以及特殊几何体的体积度量,重点考查空间想象能力及对基本体积公式的运用,难度中等.3 如图所示,已知四边形的直观图是一个边长为的正方形,则原图形的周长为( ) A B C. D4 方程x= 所表示的曲线是( )A双曲线B椭圆C双曲线的一部分D椭圆的一部分5 已知集合A=0,1,2,则集合B=xy|xA,yA的元素个数为( )A4B5C6D96 数列an是等差数列,若a1+1,a3+2,a5+3构成公比为q的等比数列,则q=( )A1B2C3D47 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为()A B C D8 在如图55的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z的值为( )120.51xyzA1B2C3D49 若等边三角形的边长为2,为的中点,且上一点满足,则当取最小值时,( )A6 B5 C4 D310直线:(为参数)与圆:(为参数)的位置关系是()A相离 B相切 C相交且过圆心 D相交但不过圆心11已知双曲线C 的一个焦点与抛物线y2=8x的焦点相同,且双曲线C过点P(2,0),则双曲线C的渐近线方程是( )Ay=xBy=Cxy=2xDy=x12若函数在上单调递增,则实数的取值范围为( )A BC. D二、填空题13设曲线y=xn+1(nN*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxn,则a1+a2+a99的值为14,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,若的内切圆半径与外接圆半径之比为,则该双曲线的离心率为_.【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力15某工厂的某种型号的机器的使用年限x和所支出的维修费用y(万元)的统计资料如表:x681012y2356根据上表数据可得y与x之间的线性回归方程=0.7x+,据此模型估计,该机器使用年限为14年时的维修费用约为万元16若全集,集合,则 。17命题“xR,x22x10”的否定形式是18【启东中学2018届高三上学期第一次月考(10月)】已知函数在上是增函数,函数,当时,函数g(x)的最大值M与最小值m的差为,则a的值为_.三、解答题19已知椭圆C: +=1(ab0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切()求椭圆C的方程;()如图,若斜率为k(k0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且RF1F2=PF1Q,求证:直线l过定点,并求出斜率k的取值范围20如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上(1)求证:平面AEC平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小21中国高铁的某个通讯器材中配置有9个相同的元件,各自独立工作,每个元件正常工作的概率为p(0p1),若通讯器械中有超过一半的元件正常工作,则通讯器械正常工作,通讯器械正常工作的概率为通讯器械的有效率()设通讯器械上正常工作的元件个数为X,求X的数学期望,并求该通讯器械正常工作的概率P(列代数式表示)()现为改善通讯器械的性能,拟增加2个元件,试分析这样操作能否提高通讯器械的有效率22已知函数f(x)=ax2+2xlnx(aR)()若a=4,求函数f(x)的极值;()若f(x)在(0,1)有唯一的零点x0,求a的取值范围;()若a(,0),设g(x)=a(1x)22x1ln(1x),求证:g(x)在(0,1)内有唯一的零点x1,且对()中的x0,满足x0+x11 23(本小题满分12分)若二次函数满足,且.(1)求的解析式;(2)若在区间上,不等式恒成立,求实数的取值范围24已知数列an是各项均为正数的等比数列,满足a3=8,a3a22a1=0()求数列an的通项公式()记bn=log2an,求数列anbn的前n项和Sn周至县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】【分析】设直线2x+y+7=0的倾斜角为,则tan=2,即可判断出结论【解答】解:设直线2x+y+7=0的倾斜角为,则tan=2,则为钝角故选:C2 【答案】B 3 【答案】C【解析】考点:平面图形的直观图.4 【答案】C【解析】解:x=两边平方,可变为3y2x2=1(x0),表示的曲线为双曲线的一部分;故选C【点评】本题主要考查了曲线与方程解题的过程中注意x的范围,注意数形结合的思想5 【答案】B【解析】解:x=0时,y=0,1,2,xy=0,1,2;x=1时,y=0,1,2,xy=1,0,1;x=2时,y=0,1,2,xy=2,1,0;B=0,1,2,1,2,共5个元素故选:B6 【答案】A【解析】解:设等差数列an的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3化简得:(2d+1)2=0,即d=q=1故选:A【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题7 【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B8 【答案】A【解析】解:因为每一纵列成等比数列,所以第一列的第3,4,5个数分别是,第三列的第3,4,5个数分别是,又因为每一横行成等差数列,第四行的第1、3个数分别为,所以y=,第5行的第1、3个数分别为,所以z=所以x+y+z=+=1故选:A【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力9 【答案】D【解析】试题分析:由题知,;设,则,可得,当取最小值时,最小值在时取到,此时,将代入,则.故本题答案选D.考点:1.向量的线性运算;2.基本不等式10【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2圆心到直线的距离为:,所以直线与圆相交。又圆心不在直线上,所以直线不过圆心。故答案为:D11【答案】A【解析】解:抛物线y2=8x的焦点(2,0),双曲线C 的一个焦点与抛物线y2=8x的焦点相同,c=2,双曲线C过点P(2,0),可得a=2,所以b=2双曲线C的渐近线方程是y=x故选:A【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查12【答案】D【解析】考点:1、导数;2、单调性;3、函数与不等式. 二、填空题13【答案】2 【解析】解:曲线y=xn+1(nN*),y=(n+1)xn,f(1)=n+1,曲线y=xn+1(nN*)在(1,1)处的切线方程为y1=(n+1)(x1),该切线与x轴的交点的横坐标为xn=,an=lgxn,an=lgnlg(n+1),a1+a2+a99=(lg1lg2)+(lg2lg3)+(lg3lg4)+(lg4lg5)+(lg5lg6)+(lg99lg100)=lg1lg100=2故答案为:214【答案】【解析】15【答案】7.5 【解析】解:由表格可知=9, =4,这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线=0.7x+上,4=0.79+,=2.3,这组数据对应的线性回归方程是=0.7x2.3,x=14,=7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求a的值,这样使得题目简化,注意运算不要出错16【答案】|01【解析】,|01。17【答案】 【解析】解:因为全称命题的否定是特称命题所以,命题“xR,x22x10”的否定形式是:故答案为:18【答案】【解析】,因为在上是增函数,即在上恒成立,则,当时,又,令,则,(1)当时,则,则,(2)当时,则,舍。三、解答题19【答案】 【解析】()解:椭圆的左,右焦点分别为F1(c,0),F2(c,0),椭圆的离心率为,即有=,即a=c,b=c,以原点为圆心,椭圆的短半轴长为半径的圆方程为x2+y2=b2,直线y=x+与圆相切,则有=1=b,即有a=,则椭圆C的方程为+y2=1;()证明:设Q(x1,y1),R(x2,y2),F1(1,0),由RF1F2=PF1Q,可得直线QF1和RF1关于x轴对称,即有+=0,即+=0,即有x1y2+y2+x2y1+y1=0,设直线PQ:y=kx+t,代入椭圆方程,可得(1+2k2)x2+4ktx+2t22=0,判别式=16k2t24(1+2k2)(2t22)0,即为t22k21x1+x2=,x1x2=,y1=kx1+t,y2=kx2+t,代入可得,(k+t)(x1+x2)+2t+2kx1x2=0,将代入,化简可得t=2k,则直线l的方程为y=kx+2k,即y=k(x+2)即有直线l恒过定点(2,0)将t=2k代入,可得2k21,解得k0或0k则直线l的斜率k的取值范围是(,0)(0,)【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题20【答案】 【解析】()证明:四边形ABCD是正方形,ACBD,PD底面ABCD,PDAC,AC平面PDB,平面AEC平面PDB()解:设ACBD=O,连接OE,由()知AC平面PDB于O,AEO为AE与平面PDB所的角,O,E分别为DB、PB的中点,OEPD,又PD底面ABCD,OE底面ABCD,OEAO,在RtAOE中,AEO=45,即AE与平面PDB所成的角的大小为45【点评】本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题21【答案】 【解析】解:()由题意可知:XB(9,p),故EX=9p在通讯器械配置的9个元件中,恰有5个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有6个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有7个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有8个元件正常工作的概率为:在通讯器械配置的9个元件中,恰有9个元件正常工作的概率为:通讯器械正常工作的概率P=;()当电路板上有11个元件时,考虑前9个元件,为使通讯器械正常工作,前9个元件中至少有4个元件正常工作若前9个元素有4个正常工作,则它的概率为:此时后两个元件都必须正常工作,它的概率为: p2;若前9个元素有5个正常工作,则它的概率为:此时后两个元件至少有一个正常工作,它的概率为:;若前9个元素至少有6个正常工作,则它的概率为:;此时通讯器械正常工作,故它的概率为:P=p2+,可得PP=p2+,=故当p=时,P=P,即增加2个元件,不改变通讯器械的有效率;当0p时,PP,即增加2个元件,通讯器械的有效率降低;当p时,PP,即增加2个元件,通讯器械的有效率提高【点评】本题考查二项分布,考查了相互独立事件及其概率,关键是对题意的理解,属概率统计部分难度较大的题目22【答案】【解析】满分(14分)解法一:()当a=4时,f(x)=4x2+2xlnx,x(0,+),(1分)由x(0,+),令f(x)=0,得当x变化时,f(x),f(x)的变化如下表:xf(x)0+f(x)极小值故函数f(x)在单调递减,在单调递增,(3分)f(x)有极小值,无极大值(4分)(),令f(x)=0,得2ax2+2x1=0,设h(x)=2ax2+2x1则f(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0当a=0时,方程的解为,满足题意;(5分)当a0时,由函数h(x)图象的对称轴,函数h(x)在(0,1)上单调递增,且h(0)=1,h(1)=2a+10,所以满足题意;(6分)当a0,=0时,此时方程的解为x=1,不符合题意;当a0,0时,由h(0)=1,只需h(1)=2a+10,得(7分)综上,(8分)(说明:=0未讨论扣1分)()设t=1x,则t(0,1),p(t)=g(1t)=at2+2t3lnt,(9分),由,故由()可知,方程2at2+2t1=0在(0,1)内有唯一的解x0,且当t(0,x0)时,p(t)0,p(t)单调递减;t(x0,1)时,p(t)0,p(t)单调递增(11分)又p(1)=a10,所以p(x0)0(12分)取t=e3+2a(0,1),则p(e3+2a)=ae6+4a+2e3+2a3lne3+2a=ae6+4a+2e3+2a3+32a=a(e6+4a2)+2e3+2a0,从而当t(0,x0)时,p(t)必存在唯一的零点t1,且0t1x0,即01x1x0,得x1(0,1),且x0+x11,从而函数g(x)在(0,1)内有唯一的零点x1,满足x0+x11(14分)解法二:()同解法一;(4分)(),令f(x)=0,由2ax2+2x1=0,得(5分)设,则m(1,+),(6分)问题转化为直线y=a与函数的图象在(1,+)恰有一个交点问题又当m(1,+)时,h(m)单调递增,(7分)故直线y=a与函数h(m)的图象恰有一个交点,当且仅当(8分)()同解法一(说明:第()问判断零点存在时,利用t0时,p(t)+进行证明,扣1分)【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校游泳馆管理制度
- 学校营养政管理制度
- 学生上学队管理制度
- 学生用手机管理制度
- 宁洱县财务管理制度
- 安全生物柜管理制度
- 安环部综合管理制度
- 安防部工作管理制度
- 实行平安卡管理制度
- 宠物火化店管理制度
- 2025年中国融通农业发展有限集团有限公司招聘笔试冲刺题(带答案解析)
- 法律文化-形考作业4-国开(ZJ)-参考资料
- 2025年中考物理押题猜想卷(山西卷)(全解全析)
- 链板回转式格栅除污机出厂检验报告(LF型)
- 陕西省中小学学生休学复学申请表
- 模具外发加工与验收标准及流程
- 空调水管、流量、流速、管径自动计算以及推荐表和水管各种参数对照表47729
- 《架空输电线路防鸟挡板技术规范》征求
- 浙江省高速公路服务区建设指南
- 篮球行进间体前变向换手运球说课
- 建筑施工内审检查表(各部门完整)(共13页)
评论
0/150
提交评论