荔波县一中2018-2019学年上学期高二数学12月月考试题含解析_第1页
荔波县一中2018-2019学年上学期高二数学12月月考试题含解析_第2页
荔波县一中2018-2019学年上学期高二数学12月月考试题含解析_第3页
荔波县一中2018-2019学年上学期高二数学12月月考试题含解析_第4页
荔波县一中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

荔波县一中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 实数x,y满足不等式组,则下列点中不能使u=2x+y取得最大值的是( )A(1,1)B(0,3)C(,2)D(,0)2 利用斜二测画法得到的:三角形的直观图是三角形;平行四边形的直观图是平行四边形;正方形的直观图是正方形;菱形的直观图是菱形以上结论正确的是( )A B C D3 函数有两个不同的零点,则实数的取值范围是( )A B C D4 若函数f(x)=kaxax,(a0,a1)在(,+)上既是奇函数,又是增函数,则g(x)=loga(x+k)的是( )ABCD5 与椭圆有公共焦点,且离心率的双曲线方程为( )ABCD6 设函数f(x)是奇函数f(x)(xR)的导函数,f(2)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是( )A(,2)(0,2)B(,2)(2,+)C(2,0)(2,+)D(2,0)(0,2)7 在中,若,则( )A B C. D8 已知数列an满足log3an+1=log3an+1(nN*),且a2+a4+a6=9,则log(a5+a7+a9)的值是( )AB5C5D9 数列an的通项公式为an=n+p,数列bn的通项公式为bn=2n5,设cn=,若在数列cn中c8cn(nN*,n8),则实数p的取值范围是( )A(11,25)B(12,16C(12,17)D16,17)10有以下四个命题:若=,则x=y若lgx有意义,则x0若x=y,则=若xy,则 x2y2则是真命题的序号为( )ABCD11关于函数,下列说法错误的是( )(A)是的极小值点 ( B ) 函数有且只有1个零点 (C)存在正实数,使得恒成立(D)对任意两个正实数,且,若,则 12如图,棱长为的正方体中,是侧面对角线上一点,若 是菱形,则其在底面上投影的四边形面积( ) A B C. D二、填空题13设函数f(x)=若ff(a),则a的取值范围是14正六棱台的两底面边长分别为1cm,2cm,高是1cm,它的侧面积为15(2)7的展开式中,x2的系数是16分别在区间、上任意选取一个实数,则随机事件“”的概率为_.17已知实数x,y满足约束条,则z=的最小值为18观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第n个等式为三、解答题19设函数f(x)=x36x+5,xR()求f(x)的单调区间和极值;()若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围20已知函数f(x)=log2(m+)(mR,且m0)(1)求函数f(x)的定义域;(2)若函数f(x)在(4,+)上单调递增,求m的取值范围 21已知函数f(x)=ax22lnx()若f(x)在x=e处取得极值,求a的值;()若x(0,e,求f(x)的单调区间;() 设a,g(x)=5+ln,x1,x2(0,e,使得|f(x1)g(x2)|9成立,求a的取值范围 22【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=(2a)(x1)2lnx,g(x)=(aR,e为自然对数的底数)()当a=1时,求f(x)的单调区间;()若函数f(x)在上无零点,求a的最小值;()若对任意给定的x0(0,e,在(0,e上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围23(本小题满分12分)ABC的三内角A,B,C的对边分别为a,b,c,AD是BC边上的中线(1)求证:AD;(2)若A120,AD,求ABC的面积24已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过点D(2,0)(1)求该椭圆的标准方程;(2)设点,若P是椭圆上的动点,求线段PA的中点M的轨迹方程荔波县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】 D【解析】解:由题意作出其平面区域,将u=2x+y化为y=2x+u,u相当于直线y=2x+u的纵截距,故由图象可知,使u=2x+y取得最大值的点在直线y=32x上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=32x上但不在阴影区域内,故不成立;故选D【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题2 【答案】A【解析】考点:斜二测画法3 【答案】B【解析】试题分析:函数有两个零点等价于与的图象有两个交点,当时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B. (1) (2)考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程零点个数的常用方法:直接法:可利用判别式的正负直接判定一元二次方程根的个数;转化法:函数零点个数就是方程根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;数形结合法:一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题.本题的解答就利用了方法.4 【答案】C【解析】解:函数f(x)=kaxax,(a0,a1)在(,+)上是奇函数则f(x)+f(x)=0即(k1)(axax)=0则k=1又函数f(x)=kaxax,(a0,a1)在(,+)上是增函数则a1则g(x)=loga(x+k)=loga(x+1)函数图象必过原点,且为增函数故选C【点评】若函数在其定义域为为奇函数,则f(x)+f(x)=0,若函数在其定义域为为偶函数,则f(x)f(x)=0,这是函数奇偶性定义的变形使用,另外函数单调性的性质,在公共单调区间上:增函数减函数=增函数也是解决本题的关键5 【答案】 A【解析】解:由于椭圆的标准方程为:则c2=132122=25则c=5又双曲线的离心率a=4,b=3又因为且椭圆的焦点在x轴上,双曲线的方程为:故选A【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于a,b的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx2+ny2=1(m0,n0,mn),双曲线方程可设为mx2ny2=1(m0,n0,mn),由题目所给条件求出m,n即可6 【答案】A【解析】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)0成立,即当x0时,g(x)0,当x0时,函数g(x)为减函数,又g(x)=g(x),函数g(x)为定义域上的偶函数,x0时,函数g(x)是增函数,又g(2)=0=g(2),x0时,由f(x)0,得:g(x)g(2),解得:0x2,x0时,由f(x)0,得:g(x)g(2),解得:x2,f(x)0成立的x的取值范围是:(,2)(0,2)故选:A7 【答案】B【解析】考点:正弦定理的应用.8 【答案】B【解析】解:数列an满足log3an+1=log3an+1(nN*),an+1=3an0,数列an是等比数列,公比q=3又a2+a4+a6=9,=a5+a7+a9=339=35,则log(a5+a7+a9)=5故选;B9 【答案】C【解析】解:当anbn时,cn=an,当anbn时,cn=bn,cn是an,bn中的较小者,an=n+p,an是递减数列,bn=2n5,bn是递增数列,c8cn(n8),c8是cn的最大者,则n=1,2,3,7,8时,cn递增,n=8,9,10,时,cn递减,n=1,2,3,7时,2n5n+p总成立,当n=7时,2757+p,p11,n=9,10,11,时,2n5n+p总成立,当n=9时,2959+p,成立,p25,而c8=a8或c8=b8,若a8b8,即23p8,p16,则c8=a8=p8,p8b7=275,p12,故12p16, 若a8b8,即p8285,p16,c8=b8=23,那么c8c9=a9,即8p9,p17,故16p17,综上,12p17故选:C10【答案】A【解析】解:若=,则,则x=y,即对;若lgx有意义,则x0,即对;若x=y0,则=,若x=y0,则不成立,即错;若xy0,则 x2y2,即错故真命题的序号为故选:A11【答案】 C 【解析】 ,且当时,函数递减,当时,函数递增,因此是的极小值点,A正确;,所以当时,恒成立,即单调递减,又,所以有零点且只有一个零点,B正确;设,易知当时,对任意的正实数,显然当时,即,所以不成立,C错误;作为选择题这时可得结论,选C,下面对D研究,画出函数草图可看出(0,2)的时候递减的更快,所以12【答案】B【解析】试题分析:在棱长为的正方体中,设,则,解得,即菱形的边长为,则在底面上的投影四边形是底边为,高为的平行四边形,其面积为,故选B.考点:平面图形的投影及其作法.二、填空题13【答案】或a=1 【解析】解:当时,由,解得:,所以;当,f(a)=2(1a),02(1a)1,若,则,分析可得a=1若,即,因为212(1a)=4a2,由,得:综上得:或a=1故答案为:或a=1【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题14【答案】cm2 【解析】解:如图所示,是正六棱台的一部分,侧面ABB1A1为等腰梯形,OO1为高且OO1=1cm,AB=1cm,A1B1=2cm取AB和A1B1的中点C,C1,连接OC,CC1,O1C1,则C1C为正六棱台的斜高,且四边形OO1C1C为直角梯形根据正六棱台的性质得OC=,O1C1=,CC1=又知上、下底面周长分别为c=6AB=6cm,c=6A1B1=12cm正六棱台的侧面积:S=(cm2)故答案为: cm2【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养15【答案】280 解:(2)7的展开式的通项为=由,得r=3x2的系数是故答案为:28016【答案】【解析】解析: 由得,如图所有实数对表示的区域的面积为,满足条件“”的实数对表示的区域为图中阴影部分,其面积为,随机事件“”的概率为17【答案】 【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由z=32x+y,设t=2x+y,则y=2x+t,平移直线y=2x+t,由图象可知当直线y=2x+t经过点B时,直线y=2x+t的截距最小,此时t最小由,解得,即B(3,3),代入t=2x+y得t=2(3)+3=3t最小为3,z有最小值为z=33=故答案为:【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法18【答案】n+(n+1)+(n+2)+(3n2)=(2n1)2 【解析】解:观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49等号右边是12,32,52,72第n个应该是(2n1)2左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,照此规律,第n个等式为n+(n+1)+(n+2)+(3n2)=(2n1)2,故答案为:n+(n+1)+(n+2)+(3n2)=(2n1)2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题三、解答题19【答案】 【解析】解:()当,f(x)的单调递增区间是,单调递减区间是当;当()由()的分析可知y=f(x)图象的大致形状及走向,当的图象有3个不同交点,即方程f(x)=有三解20【答案】【解析】解:(1)由m+0,(x1)(mx1)0,m0,(x1)(x)0,若1,即0m1时,x(,1)(,+);若=1,即m=1时,x(,1)(1,+);若1,即m1时,x(,)(1,+)(2)若函数f(x)在(4,+)上单调递增,则函数g(x)=m+在(4,+)上单调递增且恒正所以,解得:【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档21【答案】 【解析】解:() f(x)=2ax= 由已知f(e)=2ae=0,解得a=经检验,a=符合题意 () 1)当a0时,f(x)0,f(x)在(0,e上是减函数2)当a0时,若e,即,则f(x)在(0,)上是减函数,在(,e上是增函数;若e,即0a,则f(x)在0,e上是减函数综上所述,当a时,f(x)的减区间是(0,e,当a时,f(x)的减区间是,增区间是()当时,由()知f(x)的最小值是f()=1+lna;易知g(x)在(0,e上的最大值是g(e)=4lna;注意到(1+lna)(4lna)=5+2lna0,故由题设知,解得ae2故a的取值范围是(,e2) 22【答案】(1) f(x)的单调减区间为(0,2,单调增区间为2,+);(2) 函数f(x)在 上无零点,则a的最小值为24ln2;(3)a的范围是.【解析】试题分析:()把a=1代入到f(x)中求出f(x),令f(x)0求出x的范围即为函数的增区间,令f(x)0求出x的范围即为函数的减区间;()f(x)0时不可能恒成立,所以要使函数在(0,)上无零点,只需要对x(0,)时f(x)0恒成立,列出不等式解出a大于一个函数,利用导数得到函数的单调性,根据函数的增减性得到这个函数的最大值即可得到a的最小值;试题解析:(1)当a=1时,f(x)=x12lnx,则f(x)=1,由f(x)0,得x2;由f(x)0,得0x2故f(x)的单调减区间为(0,2,单调增区间为2,+);(2)因为f(x)0在区间上恒成立不可能,故要使函数上无零点,只要对任意的,f(x)0恒成立,即对恒成立令,则,再令,则,故m(x)在上为减函数,于是,从而,l(x)0,于是l(x)在上为增函数,所以,故要使恒成立,只要a24ln2,+),综上,若函数f(x)在 上无零点,则a的最小值为24ln2;(3)g(x)=e1xxe1x=(1x)e1x,当x(0,1)时,g(x)0,函数g(x)单调递增;当x(1,e时,g(x)0,函数g(x)单调递减又因为g(0)=0,g(1)=1,g(e)=ee1e0,所以,函数g(x)在(0,e上的值域为(0,1当a=2时,不合题意;当a2时,f(x)=,x(0,e当x=时,f(x)=0由题意得,f(x)在(0,e上不单调,故,即此时,当x变化时,f(x),f(x)的变化情况如下:x(0,)(,ef(x)0+f(x)最小值又因为,当x0时,2a0,f(x)+,所以,对任意给定的x0(0,e,在(0,e上总存在两个不同的xi(i=1,2),使得f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论