清水县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
清水县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
清水县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
清水县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
清水县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

清水县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 利用斜二测画法得到的:三角形的直观图是三角形;平行四边形的直观图是平行四边形;正方形的直观图是正方形;菱形的直观图是菱形以上结论正确的是( )A B C D2 定义在R上的偶函数在0,7上是增函数,在7,+)上是减函数,又f(7)=6,则f(x)( )A在7,0上是增函数,且最大值是6B在7,0上是增函数,且最小值是6C在7,0上是减函数,且最小值是6D在7,0上是减函数,且最大值是63 某班级有6名同学去报名参加校学生会的4项社团活动,若甲、乙两位同学不参加同一社团,每个社团都有人参加,每人只参加一个社团,则不同的报名方案数为( )A4320B2400C2160D13204 一个四边形的斜二侧直观图是一个底角为45,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A2+B1+CD5 设函数,则有( )Af(x)是奇函数,Bf(x)是奇函数, y=bxCf(x)是偶函数Df(x)是偶函数,6 (2014新课标I)如图,圆O的半径为1,A是圆上的定点,P是圆上的动点,角x的始边为射线OA,终边为射线OP,过点P做直线OA的垂线,垂足为M,将点M到直线OP的距离表示为x的函数f(x),则y=f(x)在0,的图象大致为( )ABCD7 在中,那么一定是( )A锐角三角形 B直角三角形 C等腰三角形 D等腰三角形或直角三角形8 已知平面向量与的夹角为,且,则( )A B C D 9 (m+1)x2(m1)x+3(m1)0对一切实数x恒成立,则实数m的取值范围是( )A(1,+)B(,1)CD10若复数z=(其中aR,i是虚数单位)的实部与虚部相等,则a=( )A3B6C9D1211已知全集U=R,集合M=x|2x12和N=x|x=2k1,k=1,2,的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有( )A3个B2个C1个D无穷多个12将函数的图象向左平移个单位,再向上平移3个单位,得到函数的图象,则的解析式为( )A BC D【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度.二、填空题13已知双曲线的标准方程为,则该双曲线的焦点坐标为,渐近线方程为14已知实数x,y满足,则目标函数z=x3y的最大值为15【2017-2018第一学期东台安丰中学高三第一次月考】函数的单调递增区间为_16在数列中,则实数a=,b=17曲线在点(3,3)处的切线与轴x的交点的坐标为18幂函数在区间上是增函数,则 三、解答题19设点P的坐标为(x3,y2)(1)在一个盒子中,放有标号为1,2,3的三张卡片,现在从盒子中随机取出一张卡片,记下标号后把卡片放回盒中,再从盒子中随机取出一张卡片记下标号,记先后两次抽取卡片的标号分别为x、y,求点P在第二象限的概率;(2)若利用计算机随机在区间上先后取两个数分别记为x、y,求点P在第三象限的概率20如图,四棱锥PABCD中,PD平面ABCD,底面ABCD为正方形,BC=PD=2,E为PC的中点,求证:PCBC;()求三棱锥CDEG的体积;()AD边上是否存在一点M,使得PA平面MEG若存在,求AM的长;否则,说明理由 21已知函数f(x)=2cos2x+2sinxcosx1,且f(x)的周期为2()当时,求f(x)的最值;()若,求的值22在数列an中,a1=1,an+1=1,bn=,其中nN*(1)求证:数列bn为等差数列;(2)设cn=bn+1(),数列cn的前n项和为Tn,求Tn;(3)证明:1+21(nN*) 23【淮安市淮海中学2018届高三上第一次调研】已知函数.(1)当时,求满足的的取值;(2)若函数是定义在上的奇函数存在,不等式有解,求的取值范围;若函数满足,若对任意,不等式恒成立,求实数的最大值.24已知全集U=1,2,3,4,5,6,7,A=2,4,5,B=1,3,5,7(1)求AB;(2)求(UA)B;(3)求U(AB)清水县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】考点:斜二测画法2 【答案】D【解析】解:函数在0,7上是增函数,在7,+)上是减函数,函数f(x)在x=7时,函数取得最大值f(7)=6,函数f(x)是偶函数,在7,0上是减函数,且最大值是6,故选:D3 【答案】D【解析】解:依题意,6名同学可分两组:第一组(1,1,1,3),利用间接法,有=388,第二组(1,1,2,2),利用间接法,有()=932根据分类计数原理,可得388+932=1320种,故选D【点评】本题考查排列、组合及简单计数问题,考查分类讨论思想与转化思想,考查理解与运算能力,属于中档题4 【答案】A【解析】解:四边形的斜二侧直观图是一个底角为45,腰和上底的长均为1的等腰梯形,原四边形为直角梯形,且CD=CD=1,AB=OB=,高AD=20D=2,直角梯形ABCD的面积为,故选:A5 【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称又f(x)=f(x),所以f(x)为偶函数而f()=f(x),故选C【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法6 【答案】 C【解析】解:在直角三角形OMP中,OP=1,POM=x,则OM=|cosx|,点M到直线OP的距离表示为x的函数f(x)=OM|sinx|=|cosx|sinx|=|sin2x|,其周期为T=,最大值为,最小值为0,故选C【点评】本题主要考查三角函数的图象与性质,正确表示函数的表达式是解题的关键,同时考查二倍角公式的运用7 【答案】D【解析】试题分析:在中,化简得,解得,即,所以或,即或,所以三角形为等腰三角形或直角三角形,故选D考点:三角形形状的判定【方法点晴】本题主要考查了三角形形状的判定,其中解答中涉及到二倍角的正弦、余弦函数公式、以及同角三角函数基本关系的运用,其中熟练掌握三角恒等变换的公式是解答的关键,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答中得出,从而得到或是试题的一个难点,属于中档试题8 【答案】C考点:平面向量数量积的运算9 【答案】C【解析】解:不等式(m+1)x2(m1)x+3(m1)0对一切xR恒成立,即(m+1)x2(m1)x+3(m1)0对一切xR恒成立若m+1=0,显然不成立若m+10,则 解得a故选C【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需10【答案】A【解析】解:复数z=由条件复数z=(其中aR,i是虚数单位)的实部与虚部相等,得,18a=3a+6,解得a=3故选:A【点评】本题考查复数的代数形式的混合运算,考查计算能力11【答案】B【解析】解:根据题意,分析可得阴影部分所示的集合为MN,又由M=x|2x12得1x3,即M=x|1x3,在此范围内的奇数有1和3所以集合MN=1,3共有2个元素,故选B12【答案】B【解析】根据三角函数图象的平移变换理论可得,将的图象向左平移个单位得到函数的图象,再将的图象向上平移3个单位得到函数的图象,因此 .二、填空题13【答案】(,0) y=2x 【解析】解:双曲线的a=2,b=4,c=2,可得焦点的坐标为(,0),渐近线方程为y=x,即为y=2x故答案为:(,0),y=2x【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题14【答案】5 【解析】解:由z=x3y得y=,作出不等式组对应的平面区域如图(阴影部分):平移直线y=,由图象可知当直线y=经过点C时,直线y=的截距最小,此时z最大,由,解得,即C(2,1)代入目标函数z=x3y,得z=23(1)=2+3=5,故答案为:515【答案】【解析】16【答案】a=,b= 【解析】解:由5,10,17,ab,37知,ab=26,由3,8,a+b,24,35知,a+b=15,解得,a=,b=;故答案为:,【点评】本题考查了数列的性质的判断与归纳法的应用17【答案】(,0) 【解析】解:y=,斜率k=y|x=3=2,切线方程是:y3=2(x3),整理得:y=2x+9,令y=0,解得:x=,故答案为:【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题18【答案】【解析】【方法点睛】本题主要考查幂函数的定义与性质,属于中档题.幂函数定义与性质应用的三个关注点:(1)若幂函数是偶函数,则必为偶数当是分数时,一般将其先化为根式,再判断;(2)若幂函数在上单调递增,则,若在上单调递减,则;(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较. 1三、解答题19【答案】 【解析】解:(1)由已知得,基本事件(2,1),(2,0),(2,1),(1,1),(1,0),(1,1),(0,1),(0,0)(0,1)共9种4(分)设“点P在第二象限”为事件A,事件A有(2,1),(1,1)共2种则P(A)=6(分)(2)设“点P在第三象限”为事件B,则事件B满足8(分),作出不等式组对应的平面区域如图:则P(B)=12(分)20【答案】 【解析】解:(I)证明:PD平面ABCD,PDBC,又ABCD是正方形,BCCD,PDICE=D,BC平面PCD,又PC面PBC,PCBC(II)解:BC平面PCD,GC是三棱锥GDEC的高E是PC的中点,(III)连接AC,取AC中点O,连接EO、GO,延长GO交AD于点M,则PA平面MEG下面证明之:E为PC的中点,O是AC的中点,EO平面PA, 又EO平面MEG,PA平面MEG,PA平面MEG,在正方形ABCD中,O是AC中点,OCGOAM,所求AM的长为 【点评】本题主要考查线面平行与垂直关系、多面体体积计算等基础知识,考查空间想象能、逻辑思维能力、运算求解能力和探究能力、考查数形结合思想、化归与转化思想21【答案】 【解析】(本题满分为13分)解:()=,T=2,当时,f(x)有最小值,当时,f(x)有最大值2()由,所以,所以,而,所以,即22【答案】 【解析】(1)证明:bn+1bn=1,又b1=1数列bn为等差数列,首项为1,公差为1(2)解:由(1)可得:bn=ncn=bn+1()=(n+1)数列cn的前n项和为Tn=+3+(n+1)=+3+n+(n+1),Tn=+(n+1)=+(n+1),可得Tn=(3)证明:1+21(nN*)即为:1+1=2(k=2,3,)1+1+2(1)+()+()=1+2=211+21(nN*) 23【答案】(1)(2),6【解析】试题解析:(1)由题意,化简得解得,所以(2)因为是奇函数,所以,所以化简并变形得:要使上式对任意的成立,则解得:,因为的定义域是,所以舍去所以,所以对任意有:因为,所以,所以,因此在R上递减因为,所以,即在时有解所以,解得:,所以的取值范围为因为,所以即所以不等式恒成立,即,即:恒成立令,则在时恒成立令,时,所以在上单调递减时,所以在上单调递增所以,所以所以,实数m的最大值为6 考点:利用函数性质解不等式,不等式恒成立问题【思路点睛】利用导数研究不等式恒成立或存在型问题,首先

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论