衡阳县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
衡阳县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
衡阳县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
衡阳县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
衡阳县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

衡阳县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 如图,一个底面半径为R的圆柱被与其底面所成角是30的平面所截,截面是一个椭圆,则该椭圆的离心率是( )ABCD2 P是双曲线=1(a0,b0)右支上一点,F1、F2分别是左、右焦点,且焦距为2c,则PF1F2的内切圆圆心的横坐标为( )AaBbCcDa+bc3 已知点A(1,2),B(3,1),则线段AB的垂直平分线的方程是( )A4x+2y=5B4x2y=5Cx+2y=5Dx2y=54 下列函数中,为偶函数的是( )Ay=x+1By=Cy=x4Dy=x55 抛物线y=8x2的准线方程是( )Ay=By=2Cx=Dy=26 已知数列an满足a1=1,a2=2,an+2=(1+cos2)an+sin2,则该数列的前10项和为( )A89B76C77D357 数列1,4,7,10,(1)n(3n2)的前n项和为Sn,则S11+S20=( )A16B14C28D308 设、是两个不同的平面,l、m为两条不同的直线,命题p:若平面,l,m,则lm;命题q:l,ml,m,则,则下列命题为真命题的是( )Ap或qBp且qCp或qDp且q9 设复数(是虚数单位),则复数( )A. B. C. D. 【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力10若直线y=kxk交抛物线y2=4x于A,B两点,且线段AB中点到y轴的距离为3,则|AB|=( )A12B10C8D611已知m,n为不同的直线,为不同的平面,则下列说法正确的是( )Am,nmnBm,nmnCm,n,mnDn,n12(2015秋新乡校级期中)已知x+x1=3,则x2+x2等于( )A7B9C11D13二、填空题13已知向量满足,则与的夹角为 . 【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题.14已知双曲线=1(a0,b0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=48x的准线上,则双曲线的方程是 15某公司租赁甲、乙两种设备生产两类产品,甲种设备每天能生产类产品5件和类产品10件,乙种设备每天能生产类产品6件和类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产类产品50件,类产品140件,所需租赁费最少为_元.16【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=,对任意的m2,2,f(mx2)+f(x)0恒成立,则x的取值范围为_17函数f(x)=2ax+13(a0,且a1)的图象经过的定点坐标是18已知a=(cosxsinx)dx,则二项式(x2)6展开式中的常数项是三、解答题19甲、乙两支篮球队赛季总决赛采用7场4胜制,每场必须分出胜负,场与场之间互不影响,只要有一队获胜4场就结束比赛现已比赛了4场,且甲篮球队胜3场已知甲球队第5,6场获胜的概率均为,但由于体力原因,第7场获胜的概率为()求甲队分别以4:2,4:3获胜的概率;()设X表示决出冠军时比赛的场数,求X的分布列及数学期望20某校为了解2015届高三毕业班准备考飞行员学生的身体素质,对他们的体重进行了测量,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右前3个小组的频率之比为1:2:4,其中第二小组的频数为11()求该校报考飞行员的总人数;()若经该学校的样本数据来估计全省的总体数据,若从全省报考飞行员的学生中(人数很多)任选3人,设X表示体重超过60kg的学生人数,求X的数学期望与方差21已知集合A=x|1,xR,B=x|x22xm0()当m=3时,求;A(RB);()若AB=x|1x4,求实数m的值22已知z是复数,若z+2i为实数(i为虚数单位),且z4为纯虚数(1)求复数z;(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围23一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形(1)求该几何体的体积;111(2)求该几何体的表面积24如图,四棱锥PABCD的底面是正方形,PD底面ABCD,点E在棱PB上(1)求证:平面AEC平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小衡阳县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为: =,a2=b2+c2,c=,椭圆的离心率为:e=故选:A【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力2 【答案】A【解析】解:如图设切点分别为M,N,Q,则PF1F2的内切圆的圆心的横坐标与Q横坐标相同由双曲线的定义,PF1PF2=2a由圆的切线性质PF1PF2=FIMF2N=F1QF2Q=2a,F1Q+F2Q=F1F2=2c,F2Q=ca,OQ=a,Q横坐标为a故选A【点评】本题巧妙地借助于圆的切线的性质,强调了双曲线的定义3 【答案】B【解析】解:线段AB的中点为,kAB=,垂直平分线的斜率 k=2,线段AB的垂直平分线的方程是 y=2(x2)4x2y5=0,故选B【点评】本题考查两直线垂直的性质,线段的中点坐标公式,以及用直线方程的点斜式求直线方程的求法4 【答案】C【解析】解:对于A,既不是奇函数,也不是偶函数,对于B,满足f(x)=f(x),是奇函数,对于C,定义域为R,满足f(x)=f(x),则是偶函数,对于D,满足f(x)=f(x),是奇函数,故选:C【点评】本题主要考查了偶函数的定义,同时考查了解决问题、分析问题的能力,属于基础题5 【答案】A【解析】解:整理抛物线方程得x2=y,p=抛物线方程开口向下,准线方程是y=,故选:A【点评】本题主要考查抛物线的基本性质解决抛物线的题目时,一定要先判断焦点所在位置6 【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2)a2+sin2=2a2=4一般地,当n=2k1(kN*)时,a2k+1=1+cos2a2k1+sin2=a2k1+1,即a2k+1a2k1=1所以数列a2k1是首项为1、公差为1的等差数列,因此a2k1=k当n=2k(kN*)时,a2k+2=(1+cos2)a2k+sin2=2a2k所以数列a2k是首项为2、公比为2的等比数列,因此a2k=2k该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C7 【答案】B【解析】解:an=(1)n(3n2),S11=()+(a2+a4+a6+a8+a10)=(1+7+13+19+25+31)+(4+10+16+22+28)=16,S20=(a1+a3+a19)+(a2+a4+a20)=(1+7+55)+(4+10+58)=+=30,S11+S20=16+30=14故选:B【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用8 【答案】 C【解析】解:在长方体ABCDA1B1C1D1中命题p:平面AC为平面,平面A1C1为平面,直线A1D1,和直线AB分别是直线m,l,显然满足,l,m,而m与l异面,故命题p不正确;p正确;命题q:平面AC为平面,平面A1C1为平面,直线A1D1,和直线AB分别是直线m,l,显然满足l,ml,m,而,故命题q不正确;q正确;故选C【点评】此题是个基础题考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力9 【答案】A【解析】10【答案】C【解析】解:直线y=kxk恒过(1,0),恰好是抛物线y2=4x的焦点坐标,设A(x1,y1) B(x2,y2) 抛物y2=4x的线准线x=1,线段AB中点到y轴的距离为3,x1+x2=6,|AB|=|AF|+|BF|=x1+x2+2=8,故选:C【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离11【答案】D【解析】解:在A选项中,可能有n,故A错误;在B选项中,可能有n,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确故选:D【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意空间思维能力的培养12【答案】A【解析】解:x+x1=3,则x2+x2=(x+x1)22=322=7故选:A【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题二、填空题13【答案】【解析】14【答案】【解析】解:因为抛物线y2=48x的准线方程为x=12,则由题意知,点F(12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为故答案为:【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键15【答案】【解析】111试题分析:根据题意设租赁甲设备,乙设备,则,求目标函数的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值.1111考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产天,该公司所需租赁费为元,则,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.16【答案】【解析】17【答案】(1,1) 【解析】解:由指数幂的性质可知,令x+1=0得x=1,此时f(1)=23=1,即函数f(x)的图象经过的定点坐标是(1,1),故答案为:(1,1)18【答案】240 【解析】解:a=(cosxsinx)dx=(sinx+cosx)=11=2,则二项式(x2)6=(x2+)6展开始的通项公式为Tr+1=2rx123r,令123r=0,求得r=4,可得二项式(x2)6展开式中的常数项是24=240,故答案为:240【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题三、解答题19【答案】 【解析】解:()设甲队以4:2,4:3获胜的事件分别为A,B,甲队第5,6场获胜的概率均为,第7场获胜的概率为,甲队以4:2,4:3获胜的概率分别为和()随机变量X的可能取值为5,6,7,P(X=6)=,P(X=7)=,随机变量X的分布列为 X 5 6 7p【点评】本题考查离散型随机变量的分布列,期望的求法,独立重复试验概率的乘法公式的应用,考查分析问题解决问题的能力20【答案】 【解析】(本小题满分12分)解:()设该校报考飞行员的总人数为n,前三个小组的频率为p1,p2,p3,则,解得,由于,故n=55()由()知,一个报考学生的体重超过60公斤的概率为:p=,由题意知X服从二项分布,即:XB(3,),P(X=k)=,k=0,1,2,3,EX=,DX=【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题21【答案】 【解析】解:(1)当m=3时,由x22x301x3,由11x5,AB=x|1x3;(2)若AB=x|1x4,A=(1,5),4是方程x22xm=0的一个根,m=8,此时B=(2,4),满足AB=(1,4)m=822【答案】 【解析】解:(1)设z=x+yi(x,yR)由z+2i=x+(y+2)i为实数,得y+2=0,即y=2由z4=(x4)+yi为纯虚数,得x=4z=42i(2)(z+mi)2=(m2+4m+12)+8(m2)i,根据条件,可知 解得2m2,实数m的取值范围是(2,2)【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,属于基础题23【答案】(1);(2)【解析】(2)由三视图可知,该平行六面体中平面,平面,侧面,均为矩形,1考点:几何体的三视图;几何体的表面积与体积【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论