新兴区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
新兴区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
新兴区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
新兴区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
新兴区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新兴区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 点集(x,y)|(|x|1)2+y2=4表示的图形是一条封闭的曲线,这条封闭曲线所围成的区域面积是( )ABCD2 487被7除的余数为a(0a7),则展开式中x3的系数为( )A4320B4320C20D203 将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( )Ax=BCD4 圆上的点到直线的距离最大值是( )A B C D5 已知等比数列an的公比为正数,且a4a8=2a52,a2=1,则a1=( )AB2CD6 函数f(x)=1xlnx的零点所在区间是( )A(0,)B(,1)C(1,2)D(2,3)7 如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是( )Ax2=1B=1C=1D=18 在ABC中,AB边上的中线CO=2,若动点P满足=(sin2)+(cos2)(R),则(+)的最小值是( )A1B1C2D09 函数在区间上的最大值为5,最小值为1,则的取值范围是( )A B C D10满足集合M1,2,3,4,且M1,2,4=1,4的集合M的个数为( )A1B2C3D411设曲线y=ax2在点(1,a)处的切线与直线2xy6=0平行,则a=( )A1BCD112已知函数,关于的方程()有3个相异的实数根,则的取值范围是( )A B C D【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力二、填空题13将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为14设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为15已知过球面上 三点的截面和球心的距离是球半径的一半,且,则球表面积是_.16【南通中学2018届高三10月月考】已知函数,若曲线在点处的切线经过圆的圆心,则实数的值为_17如果实数满足等式,那么的最大值是 18如图是一个正方体的展开图,在原正方体中直线AB与CD的位置关系是三、解答题19在平面直角坐标系xOy中,经过点且斜率为k的直线l与椭圆有两个不同的交点P和Q()求k的取值范围;()设椭圆与x轴正半轴、y轴正半轴的交点分别为A,B,是否存在常数k,使得向量与共线?如果存在,求k值;如果不存在,请说明理由20(文科)(本小题满分12分)我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照分成9组,制成了如图所示的频率分布直方图(1)求直方图中的值;(2)设该市有30万居民,估计全市居民中月均用量不低于3吨的人数,并说明理由;(3)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由21设锐角三角形的内角所对的边分别为(1)求角的大小;(2)若,求22从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( )ABCD23已知函数(1)令,讨论的单调区间;(2)若,正实数满足,证明24已知二次函数f(x)的图象过点(0,4),对任意x满足f(3x)=f(x),且有最小值是(1)求f(x)的解析式;(2)求函数h(x)=f(x)(2t3)x在区间0,1上的最小值,其中tR;(3)在区间1,3上,y=f(x)的图象恒在函数y=2x+m的图象上方,试确定实数m的范围新兴区实验中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:点集(x,y)|(|x|1)2+y2=4表示的图形是一条封闭的曲线,关于x,y轴对称,如图所示由图可得面积S=+=+2故选:A【点评】本题考查线段的方程特点,由曲线的方程研究曲线的对称性,体现了数形结合的数学思想2 【答案】B 解析:解:487=(491)7=+1,487被7除的余数为a(0a7),a=6,展开式的通项为Tr+1=,令63r=3,可得r=3,展开式中x3的系数为=4320,故选:B.3 【答案】B【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx,再向右平移个单位得到y=cos(x),由(x)=k,得x=2k,即+2k,kZ,当k=0时,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键4 【答案】【解析】试题分析:化简为标准形式,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,半径为1,所以距离的最大值是,故选B.考点:直线与圆的位置关系 15 【答案】D【解析】解:设等比数列an的公比为q,则q0,a4a8=2a52,a62=2a52,q2=2,q=,a2=1,a1=故选:D6 【答案】C【解析】解:f(1)=10,f(2)=12ln2=ln0,函数f(x)=1xlnx的零点所在区间是(1,2)故选:C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反7 【答案】B【解析】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2y2=(0),代入点P(2,),可得=42=2,可得双曲线的方程为x2y2=2,即为=1故选:B8 【答案】 C【解析】解: =(sin2)+(cos2)(R),且sin2+cos2=1,=(1cos2)+(cos2)=+cos2(),即=cos2(),可得=cos2,又cos20,1,P在线段OC上,由于AB边上的中线CO=2,因此(+)=2,设|=t,t0,2,可得(+)=2t(2t)=2t24t=2(t1)22,当t=1时,( +)的最小值等于2故选C【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题9 【答案】B【解析】试题分析:画出函数图象如下图所示,要取得最小值为,由图可知需从开始,要取得最大值为,由图可知的右端点为,故的取值范围是.考点:二次函数图象与性质10【答案】B【解析】解:M1,2,4=1,4,1,4是M中的元素,2不是M中的元素M1,2,3,4,M=1,4或M=1,3,4故选:B11【答案】A【解析】解:y=2ax,于是切线的斜率k=y|x=1=2a,切线与直线2xy6=0平行有2a=2a=1故选:A【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率12【答案】D第卷(共90分)二、填空题13【答案】4+ 【解析】解:作出正四棱柱的对角面如图,底面边长为6,BC=,球O的半径为3,球O1 的半径为1,则,在RtOMO1中,OO1=4,=,正四棱柱容器的高的最小值为4+故答案为:4+【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题14【答案】 【解析】解:a是甲抛掷一枚骰子得到的点数,试验发生包含的事件数6,方程x2+ax+a=0 有两个不等实根,a24a0,解得a4,a是正整数,a=5,6,即满足条件的事件有2种结果,所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键15【答案】【解析】111考点:球的体积和表面积.【方法点晴】本题主要考查了球的表面积和体积的问题,其中解答中涉及到截面圆圆心与球心的连线垂直于截面,球的性质、球的表面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记球的截面圆圆心的性质,求出球的半径是解答的关键.16【答案】【解析】结合函数的解析式可得:,对函数求导可得:,故切线的斜率为,则切线方程为:,即,圆:的圆心为,则:.17【答案】【解析】 考点:直线与圆的位置关系的应用. 1【方法点晴】本题主要考查了直线与圆的位置关系的应用,其中解答中涉及到点到直线的距离公式、直线与圆相切的判定与应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和转化与化归的思想方法,本题的解答中把的最值转化为直线与圆相切是解答的关键,属于中档试题.18【答案】异面 【解析】解:把展开图还原原正方体如图,在原正方体中直线AB与CD的位置关系是异面故答案为:异面三、解答题19【答案】 【解析】解:()由已知条件,直线l的方程为,代入椭圆方程得整理得直线l与椭圆有两个不同的交点P和Q,等价于的判别式=,解得或即k的取值范围为()设P(x1,y1),Q(x2,y2),则,由方程, 又 而所以与共线等价于,将代入上式,解得由()知或,故没有符合题意的常数k【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题20【答案】(1);(2)万;(3).【解析】(3)由图可得月均用水量不低于2.5吨的频率为:;月均用水量低于3吨的频率为:;则吨1考点:频率分布直方图 21【答案】(1);(2)【解析】1111(2)根据余弦定理,得,所以.考点:正弦定理与余弦定理22【答案】C【解析】23【答案】(1)当时,函数单调递增区间为,无递减区间,当时,函数单调递增区间为,单调递减区间为;(2)证明见解析.【解析】试题解析:(2)当时,由可得,即,令,则,则在区间上单调递减,在区间上单调递增,所以,所以,又,故,由可知1考点:函数导数与不等式【方法点晴】解答此类求单调区间问题,应该首先确定函数的定义域,否则,写出的单调区间易出错. 解决含参数问题及不等式问题注意两个转化:(1)利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用(2)将不等式的证明、方程根的个数的判定转化为函数的单调性问题处理请考生在第22、23二题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.24【答案】 【解析】解:(1)二次函数f(x)图象经过点(0,4),任意x满足f(3x)=f(x)则对称轴x=,f(x)存在最小值,则二次项系数a0设f(x)=a(x)2+将点(0,4)代入得:f(0)=,解得:a=1f(x)=(x)2+=x23x+4(2)h(x)=f(x)(2t3)x=x22tx+4=(xt)2+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论