柳林县高中2018-2019学年上学期高二数学12月月考试题含解析_第1页
柳林县高中2018-2019学年上学期高二数学12月月考试题含解析_第2页
柳林县高中2018-2019学年上学期高二数学12月月考试题含解析_第3页
柳林县高中2018-2019学年上学期高二数学12月月考试题含解析_第4页
柳林县高中2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

柳林县高中2018-2019学年上学期高二数学12月月考试题含解析班级_ 座号_ 姓名_ 分数_一、选择题1 若函数则函数的零点个数为( )A1 B2 C3 D42 已知向量|=, =10,|+|=5,则|=( )ABC5D253 若某程序框图如图所示,则该程序运行后输出的值是( )A. B.C. D. 【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.4 如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是( )Ai21Bi11Ci21Di115 “”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.6 复数是虚数单位)的虚部为( )A B C D【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力7 ABC中,A(5,0),B(5,0),点C在双曲线上,则=( )ABCD8 与圆C1:x2+y26x+4y+12=0,C2:x2+y214x2y+14=0都相切的直线有()A1条B2条C3条D4条9 数列an满足a1=, =1(nN*),则a10=( )ABCD10某几何体的三视图如图所示,该几何体的体积是( )ABCD11若方程x2mx+3=0的两根满足一根大于1,一根小于1,则m的取值范围是( )A(2,+)B(0,2)C(4,+)D(0,4)12如果点在平面区域上,点在曲线上,那么的最小值为( )A B C. D二、填空题13过椭圆+=1(ab0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若F1PF2=60,则椭圆的离心率为14已知数列an的前n项和为Sn,a1=1,2an+1=an,若对于任意nN*,当t1,1时,不等式x2+tx+1Sn恒成立,则实数x的取值范围为15为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为y=()ta(a为常数),如图所示,据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过小时后,学生才能回到教室 16在ABC中,a,b,c分别是角A,B,C的对边,若6a=4b=3c,则cosB=17函数y=f(x)的图象在点M(1,f(1)处的切线方程是y=3x2,则f(1)+f(1)=18已知平面向量,的夹角为,向量,的夹角为,则与的夹角为_,的最大值为 【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.三、解答题19某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望20已知函数f(x)=2cosx(sinx+cosx)1()求f(x)在区间0,上的最大值;()在ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围21已知函数f(x)=2sin(x+)(0,)的部分图象如图所示;(1)求,;(2)将y=f(x)的图象向左平移(0)个单位长度,得到y=g(x)的图象,若y=g(x)图象的一个对称点为(,0),求的最小值(3)对任意的x,时,方程f(x)=m有两个不等根,求m的取值范围 22某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040605070(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额23已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(,2)和(4,2)(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象写出函数y=g(x)的解析式24命题p:关于x的不等式x2+2ax+40对一切xR恒成立,q:函数f(x)=(32a)x是增函数若pq为真,pq为假求实数a的取值范围柳林县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】D【解析】 考点:函数的零点【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几个零点(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点. 2 【答案】C【解析】解:;由得, =;故选:C3 【答案】A【解析】运行该程序,注意到循环终止的条件,有n10,i1;n5,i2;n16,i3;n8,i4;n4,i5;n2,i6;n1,i7,到此循环终止,故选 A.4 【答案】D【解析】解:S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i10,应不满足条件,继续循环当i11,应满足条件,退出循环填入“i11”故选D5 【答案】A【解析】因为在上单调递增,且,所以,即.反之,当时,(),不能保证,所以“”是“”的充分不必要条件,故选A.6 【答案】A【解析】,所以虚部为-1,故选A.7 【答案】D【解析】解:ABC中,A(5,0),B(5,0),点C在双曲线上,A与B为双曲线的两焦点,根据双曲线的定义得:|ACBC|=2a=8,|AB|=2c=10,则=故选:D【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目8 【答案】C【解析】【分析】先求出两圆的圆心和半径,判断两个圆的位置关系,从而确定与它们都相切的直线条数【解答】解:圆C1:x2+y26x+4y+12=0,C2:x2+y214x2y+14=0的方程可化为,;圆C1,C2的圆心分别为(3,2),(7,1);半径为r1=1,r2=6两圆的圆心距=r2r1;两个圆外切,它们只有1条内公切线,2条外公切线故选C9 【答案】C【解析】解: =1(nN*),=1,数列是等差数列,首项为=2,公差为1=2(n1)=n1,an=1=a10=故选:C【点评】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题10【答案】A【解析】解:几何体如图所示,则V=,故选:A【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键11【答案】C【解析】解:令f(x)=x2mx+3,若方程x2mx+3=0的两根满足一根大于1,一根小于1,则f(1)=1m+30,解得:m(4,+),故选:C【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档12【答案】A【解析】试题分析:根据约束条件画出可行域表示圆上的点到可行域的距离,当在点处时,求出圆心到可行域的距离内的点的最小距离,当在点处最小, 最小值为,因此,本题正确答案是.考点:线性规划求最值.二、填空题13【答案】 【解析】解:由题意知点P的坐标为(c,)或(c,),F1PF2=60,=,即2ac=b2=(a2c2)e2+2e=0,e=或e=(舍去)故答案为:【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题14【答案】(,+) 【解析】解:数列an的前n项和为Sn,a1=1,2an+1=an,数列an是以1为首项,以为公比的等比数列,Sn=2()n1,对于任意nN*,当t1,1时,不等式x2+tx+1Sn恒成立,x2+tx+12,x2+tx10,令f(t)=tx+x21,解得:x或x,实数x的取值范围(,+)15【答案】0.6【解析】解:当t0.1时,可得1=()0.1a0.1a=0a=0.1由题意可得y0.25=,即()t0.1,即t0.1解得t0.6,由题意至少需要经过0.6小时后,学生才能回到教室故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力易错点:只单纯解不等式,而忽略题意,得到其他错误答案16【答案】 【解析】解:在ABC中,6a=4b=3cb=,c=2a,由余弦定理可得cosB=故答案为:【点评】本题考查余弦定理在解三角形中的应用,用a表示b,c是解决问题的关键,属于基础题17【答案】4 【解析】解:由题意得f(1)=3,且f(1)=312=1所以f(1)+f(1)=3+1=4故答案为4【点评】本题主要考查导数的几何意义,要注意分清f(a)与f(a)18【答案】,. 【解析】三、解答题19【答案】 【解析】【专题】概率与统计【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率为=;(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)只需求出P(X=k)(k=1,2,3,4)即可记nk为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)=,P(X=4)=所求的分布列为 Y5148 45 42 P数学期望为E(Y)=51+48+45+42=46【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题20【答案】 【解析】(本题满分为12分)解:()f(x)=2cosx(sinx+cosx)1=2sinxcosx+2cos2x1=sin2x+21=sin2x+cos2x=sin(2x+),x0,2x+,当2x+=,即x=时,f(x)min=6分()由()可知f(B)=sin(+)=1,sin(+)=,+=,B=,由正弦定理可得:b=1,2)12分【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题21【答案】 【解析】解:(1)根据函数f(x)=2sin(x+)(0,)的部分图象,可得=,求得=2再根据五点法作图可得2+=,求得=,f(x)=2sin(2x)(2)将y=f(x)的图象向左平移(0)个单位长度,得到y=g(x)=2sin=2sin(2x+2)的图象,y=g(x)图象的一个对称点为(,0),2+2=k,kZ,=,故的最小正值为(3)对任意的x,时,2x,sin(2x),即f(x),方程f(x)=m有两个不等根,结合函数f(x),x,时的图象可得,1m2 22【答案】 【解析】解:(1)(2)设回归方程为=bx+a则b=5/5=13805550/145552=6.5故回归方程为=6.5x+17.5(3)当x=7时, =6.57+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元)【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节23【答案】 【解析】(本题满分为12分)解:(1)由题意知:A=2,T=6,=6得=,f(x)=2sin(x+),函数图象过(,2),sin(+)=1,+,+=,得=A=2,=,=,f(x)=2sin(x+)(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),可得函数y=2sin(x+)的图象,然后再将新的图象向轴正方向平移个单位,得到函数g(x)=2sin(x)+=2sin()的图象故y=g(x)的解析式为:g(x)=2sin()【点评】本题主要考查了由y=Asin(x+)的部分图象确定其解析式,考查了函数y=Asin(x+)的图象变换,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论