




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
右玉县高中2018-2019学年上学期高三数学期末模拟试卷含答案班级_ 座号_ 姓名_ 分数_一、选择题1 在二项式(x3)n(nN*)的展开式中,常数项为28,则n的值为( )A12B8C6D42 已知函数f(x)满足:x4,则f(x)=;当x4时f(x)=f(x+1),则f(2+log23)=( )ABCD3 方程x= 所表示的曲线是( )A双曲线B椭圆C双曲线的一部分D椭圆的一部分4 等差数列an中,已知前15项的和S15=45,则a8等于( )AB6CD35 下列函数中,在区间(0,+)上为增函数的是( )Ay=x1By=()xCy=x+Dy=ln(x+1)6 若变量x,y满足:,且满足(t+1)x+(t+2)y+t=0,则参数t的取值范围为( )A2tB2tC2tD2t7 如图,三行三列的方阵中有9个数aij(i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )ABCD8 已知,其中是虚数单位,则的虚部为( )A B C D【命题意图】本题考查复数及共轭复数的概念,复数除法的运算法则,主要突出对知识的基础性考查,属于容易题.9 全称命题:xR,x20的否定是( )AxR,x20BxR,x20CxR,x20DxR,x2010已知函数f(x)=2x2,则函数y=|f(x)|的图象可能是( )ABCD11设集合M=(x,y)|x2+y2=1,xR,yR,N=(x,y)|x2y=0,xR,yR,则集合MN中元素的个数为( )A1B2C3D412德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=被称为狄利克雷函数,其中R为实数集,Q为有理数集,则关于函数f(x)有如下四个命题:f(f(x)=1;函数f(x)是偶函数;任取一个不为零的有理数T,f(x+T)=f(x)对任意的x=R恒成立;存在三个点A(x1,f(x1),B(x2,f(x2),C(x3,f(x3),使得ABC为等边三角形其中真命题的个数有( )A1个B2个C3个D4个二、填空题13(2)7的展开式中,x2的系数是14设函数f(x)=,则f(f(2)的值为15对任意实数x,不等式ax22ax40恒成立,则实数a的取值范围是16定义:分子为1且分母为正整数的分数叫做单位分数我们可以把1拆分为无穷多个不同的单位分数之和例如:1=+,1=+,1=+,依此方法可得:1=+,其中m,nN*,则m+n=17函数f(x)=(x3)的最小值为18用“”或“”号填空:30.830.7三、解答题19函数f(x)=Asin(x+)(A0,0,|)的一段图象如图所示 (1)求f(x)的解析式;(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合;(3)把f(x)的图象向左至少平移多少个单位,才能使得到的图象对应的函数为偶函数 20一艘客轮在航海中遇险,发出求救信号.在遇险地点南偏西方向10海里的处有一艘海难搜救艇收到求救信号后立即侦查,发现遇险客轮的航行方向为南偏东,正以每小时9海里的速度向一小岛靠近.已知海难搜救艇的最大速度为每小时21海里.(1)为了在最短的时间内追上客轮,求海难搜救艇追上客轮所需的时间;(2)若最短时间内两船在处相遇,如图,在中,求角的正弦值.21(本小题满分12分)已知数列的前n项和为,且满足(1)证明:数列为等比数列,并求数列的通项公式;(2)数列满足,其前n项和为,试求满足的最小正整数n【命题意图】本题是综合考察等比数列及其前项和性质的问题,其中对逻辑推理的要求很高.22(本小题满分10分)选修4-1:几何证明选讲如图,直线与圆相切于点,是过点的割线,点是线段的中点.(1)证明:四点共圆;(2)证明:.23在四棱锥EABCD中,底面ABCD是边长为1的正方形,AC与BD交于点O,EC底面ABCD,F为BE的中点()求证:DE平面ACF;()求证:BDAE24如图,四边形是等腰梯形,四边形 是矩形,平面,其中分别是的中点,是的中点(1)求证: 平面;(2)平面. 右玉县高中2018-2019学年上学期高三数学期末模拟试卷含答案(参考答案)一、选择题1 【答案】B【解析】解:展开式通项公式为Tr+1=(1)rx3n4r,则二项式(x3)n(nN*)的展开式中,常数项为28,n=8,r=6故选:B【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题2 【答案】A【解析】解:32+log234,所以f(2+log23)=f(3+log23)且3+log234f(2+log23)=f(3+log23)=故选A3 【答案】C【解析】解:x=两边平方,可变为3y2x2=1(x0),表示的曲线为双曲线的一部分;故选C【点评】本题主要考查了曲线与方程解题的过程中注意x的范围,注意数形结合的思想4 【答案】D【解析】解:由等差数列的性质可得:S15=15a8=45,则a8=3故选:D5 【答案】 D【解析】解:y=x1在区间(0,+)上为减函数,y=()x是减函数,y=x+,在(0,1)是减函数,(1,+)上为,增函数,y=lnx在区间(0,+)上为增函数,A,B,C不正确,D正确,故选:D【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间6 【答案】C【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由(t+1)x+(t+2)y+t=0得t(x+y+1)+x+2y=0,由,得,即(t+1)x+(t+2)y+t=0过定点M(2,1),则由图象知A,B两点在直线两侧和在直线上即可,即2(t+2)+t2(t+1)+3(t+2)+t0,即(3t+4)(2t+4)0,解得2t,即实数t的取值范围为是2,故选:C【点评】本题主要考查线性规划的应用,利用数形结合是解决本题的关键综合性较强,属于中档题7 【答案】 D【解析】古典概型及其概率计算公式【专题】计算题;概率与统计【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;所求的概率为=故选D【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单8 【答案】B【解析】由复数的除法运算法则得,所以的虚部为.9 【答案】D【解析】解:命题:xR,x20的否定是:xR,x20故选D【点评】这类问题的常见错误是没有把全称量词改为存在量词,或者对于“”的否定用“”了这里就有注意量词的否定形式如“都是”的否定是“不都是”,而不是“都不是”特称命题的否定是全称命题,“存在”对应“任意”10【答案】B【解析】解:先做出y=2x的图象,在向下平移两个单位,得到y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象故选B【点评】本题考查含有绝对值的函数的图象问题,先作出y=f(x)的图象,再将x轴下方的部分做关于x轴的对称图象即得y=|f(x)|的图象11【答案】B【解析】解:根据题意,MN=(x,y)|x2+y2=1,xR,yR(x,y)|x2y=0,xR,yR(x,y)|将x2y=0代入x2+y2=1,得y2+y1=0,=50,所以方程组有两组解,因此集合MN中元素的个数为2个,故选B【点评】本题既是交集运算,又是函数图形求交点个数问题12【答案】 D【解析】解:当x为有理数时,f(x)=1;当x为无理数时,f(x)=0当x为有理数时,f(f(x)=f(1)=1;当x为无理数时,f(f(x)=f(0)=1即不管x是有理数还是无理数,均有f(f(x)=1,故正确;有理数的相反数还是有理数,无理数的相反数还是无理数,对任意xR,都有f(x)=f(x),故正确; 若x是有理数,则x+T也是有理数; 若x是无理数,则x+T也是无理数根据函数的表达式,任取一个不为零的有理数T,f(x+T)=f(x)对xR恒成立,故正确; 取x1=,x2=0,x3=,可得f(x1)=0,f(x2)=1,f(x3)=0A(,0),B(0,1),C(,0),恰好ABC为等边三角形,故正确故选:D【点评】本题给出特殊函数表达式,求函数的值并讨论它的奇偶性,着重考查了有理数、无理数的性质和函数的奇偶性等知识,属于中档题二、填空题13【答案】280 解:(2)7的展开式的通项为=由,得r=3x2的系数是故答案为:28014【答案】4 【解析】解:函数f(x)=,f(2)=42=,f(f(2)=f()=4故答案为:415【答案】(4,0 【解析】解:当a=0时,不等式等价为40,满足条件;当a0时,要使不等式ax22ax40恒成立,则满足,即,解得4a0,综上:a的取值范围是(4,0故答案为:(4,0【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论16【答案】33 【解析】解:1=+,2=12,6=23,30=56,42=67,56=78,72=89,90=910,110=1011,132=1112,1=+=(1)+()+,+=+=,m=20,n=13,m+n=33,故答案为:33【点评】本题考查的知识点是归纳推理,但本题运算强度较大,属于难题17【答案】12 【解析】解:因为x3,所以f(x)0由题意知: =令t=(0,),h(t)=t3t2因为 h(t)=t3t2 的对称轴x=,开口朝上知函数h(t)在(0,)上单调递增,(,)单调递减;故h(t)(0,由h(t)=f(x)=12故答案为:1218【答案】 【解析】解:y=3x是增函数,又0.80.7,30.830.7故答案为:【点评】本题考查对数函数、指数函数的性质和应用,是基础题三、解答题19【答案】 【解析】解:(1)由函数的图象可得A=3, T=4,解得=再根据五点法作图可得+=0,求得=,f(x)=3sin(x)(2)令2kx2k+,kz,求得 5kx5k+,故函数的增区间为5k,5k+,kz函数的最大值为3,此时, x=2k+,即 x=5k+,kz,即f(x)的最大值为3,及取到最大值时x的集合为x|x=5k+,kz(3)设把f(x)=3sin(x)的图象向左至少平移m个单位,才能使得到的图象对应的函数为偶函数即y=3sin(x+)则由(x+m)=x+,求得m=,把函数f(x)=3sin(x)的图象向左平移个单位,可得y=3sin(x+)=3cosx 的图象【点评】本题主要考查由函数y=Asin(x+)的部分图象求解析式,正弦函数的单调性和最值,函数y=Asin(x+)的图象变换规律,属于基础题20【答案】(1)小时;(2)【解析】试题解析:(1)设搜救艇追上客轮所需时间为小时,两船在处相遇.在中,.由余弦定理得:,所以,化简得,解得或(舍去).所以,海难搜救艇追上客轮所需时间为小时.(2)由,.在中,由正弦定理得.所以角的正弦值为.考点:三角形的实际应用【方法点晴】本题主要考查了解三角形的实际应用,其中解答中涉及到正弦定理、余弦定理的灵活应用,注重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题,本题的解答中,可先根据题意,画出图形,由搜救艇和渔船的速度,那么可设时间,并用时间表示,再根据正弦定理和余弦定理,即可求解此类问题,其中正确画出图形是解答的关键21【答案】【解析】(1)当,解得.(1分)当时,-得,即,(3分)即,又.所以是以2为首项,2为公比的等比数列.即故().(5分)22【答案】(1)证明见解析;(2)证明见解析.【解析】1111试题解析:解:(1)是切线,是弦,即是等腰三角形又点是线段的中点, 是线段垂直平分线,即又由可知是线段的垂直平分线,与互相垂直且平分,四边形是正方形,则四点共圆. (5分)(2由割线定理得,由(1)知是线段的垂直平分线,从而 (10分)考点:与圆有关的比例线段23【答案】【解析】【分析】()连接FO,则OF为BDE的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 咨询直播方案怎么写好
- 江门企业拓展活动方案策划
- 保险咨询方案收费原因
- 还款咨询方案怎么写
- 节日活动策划方案案例分析
- 脑部障碍康复咨询方案
- 苏州职业危机咨询方案
- 朔州液压顶管施工方案
- 幼儿园舞蹈排练比赛合同范文8篇
- 施工现场设备管理措施专项施工方案
- 场景速写课件
- GPS的课件教学课件
- 2026年高考作文备考之抗日战争胜利80周年(九三阅兵)主题素材积累与运用
- 肺栓塞考试题及答案
- 2025年运动员:体育与健康知识试题及答案
- 综合实践 探索年月日的秘密(教案)北师大版数学三年级上册
- 2025年医师三基考试试题及答案(上半年)
- 2025年调酒师职业资格考试模拟试题集锦及答案
- 基孔肯雅热主题班会课件
- 2025年北京市公务员考试行测真题及答案详解(全优)
- 锁骨下盗血综合征伴锁骨下动脉闭塞的护理查房
评论
0/150
提交评论