




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精选高中模拟试卷梁河县外国语学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 定义在R上的奇函数f(x)满足f(x+3)=f(x),当0x1时,f(x)=2x,则f (2015)=( )A2B2CD 2 已知f(x)在R上是奇函数,且f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(7)=( )A2B2C98D983 函数y=ax+1(a0且a1)图象恒过定点( )A(0,1)B(2,1)C(2,0)D(0,2)4 已知直线x+ay1=0是圆C:x2+y24x2y+1=0的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则|AB|=( )A2B6C4D25 (2015秋新乡校级期中)已知x+x1=3,则x2+x2等于( )A7B9C11D136 已知ABC的周长为20,且顶点B (0,4),C (0,4),则顶点A的轨迹方程是( )A(x0) B(x0)C(x0) D(x0)7 数列1,4,7,10,13,的通项公式an为( )A2n1B3n+2C(1)n+1(3n2)D(1)n+13n28 若复数z=2i ( i为虚数单位),则=( )A4+2iB20+10iC42iD9 四棱锥PABCD的底面是一个正方形,PA平面ABCD,PA=AB=2,E是棱PA的中点,则异面直线BE与AC所成角的余弦值是( )ABCD10集合,则( )A B C D11将函数(其中)的图象向右平移个单位长度,所得的图象经过点,则的最小值是( )A B C D 12下列结论正确的是( )A若直线l平面,直线l平面,则B若直线l平面,直线l平面,则C若直线l1,l2与平面所成的角相等,则l1l2D若直线l上两个不同的点A,B到平面的距离相等,则l二、填空题13不等式的解为14定义:x(xR)表示不超过x的最大整数例如1.5=1,0.5=1给出下列结论:函数y=sinx是奇函数;函数y=sinx是周期为2的周期函数;函数y=sinxcosx不存在零点;函数y=sinx+cosx的值域是2,1,0,1其中正确的是(填上所有正确命题的编号)15已知一个动圆与圆C:(x+4)2+y2=100相内切,且过点A(4,0),则动圆圆心的轨迹方程16在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是17已知定义域为(0,+)的函数f(x)满足:(1)对任意x(0,+),恒有f(2x)=2f(x)成立;(2)当x(1,2时,f(x)=2x给出如下结论:对任意mZ,有f(2m)=0;函数f(x)的值域为0,+);存在nZ,使得f(2n+1)=9;“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在kZ,使得(a,b)(2k,2k+1)”;其中所有正确结论的序号是18设向量a(1,1),b(0,t),若(2ab)a2,则t_三、解答题19已知椭圆x2+4y2=4,直线l:y=x+m(1)若l与椭圆有一个公共点,求m的值;(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值20已知函数f(x)=1+(2x2)(1)用分段函数的形式表示函数;(2)画出该函数的图象;(3)写出该函数的值域21如图,M、N是焦点为F的抛物线y2=2px(p0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围22已知点(1,)是函数f(x)=ax(a0且a1)的图象上一点,等比数列an的前n项和为f(n)c,数列bn(bn0)的首项为c,且前n项和Sn满足SnSn1=+(n2)记数列前n项和为Tn,(1)求数列an和bn的通项公式;(2)若对任意正整数n,当m1,1时,不等式t22mt+Tn恒成立,求实数t的取值范围(3)是否存在正整数m,n,且1mn,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由 23如图的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm)(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC,证明:BC面EFG 24已知向量=(,1),=(cos,),记f(x)=(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)k在的零点个数梁河县外国语学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:因为f(x+3)=f(x),函数f(x)的周期是3,所以f(2015)=f(36721)=f(1);又因为函数f(x)是定义R上的奇函数,当0x1时,f(x)=2x,所以f(1)=f(1)=2,即f(2015)=2故选:B【点评】本题主要考查了函数的周期性、奇偶性的运用,属于基础题,解答此题的关键是分析出f(2015)=f(36721)=f(1)2 【答案】A【解析】解:因为f(x+4)=f(x),故函数的周期是4所以f(7)=f(3)=f(1),又f(x)在R上是奇函数,所以f(1)=f(1)=212=2,故选A【点评】本题考查函数的奇偶性与周期性3 【答案】D【解析】解:令x=0,则函数f(0)=a0+3=1+1=2函数f(x)=ax+1的图象必过定点(0,2)故选:D【点评】本题考查了指数函数的性质和a0=1(a0且a1),属于基础题4 【答案】B【解析】解:圆C:x2+y24x2y+1=0,即(x2)2+(y1)2 =4,表示以C(2,1)为圆心、半径等于2的圆由题意可得,直线l:x+ay1=0经过圆C的圆心(2,1),故有2+a1=0,a=1,点A(4,1)AC=2,CB=R=2,切线的长|AB|=6故选:B【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题5 【答案】A【解析】解:x+x1=3,则x2+x2=(x+x1)22=322=7故选:A【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题6 【答案】B【解析】解:ABC的周长为20,顶点B (0,4),C (0,4),BC=8,AB+AC=208=12,128点A到两个定点的距离之和等于定值,点A的轨迹是椭圆,a=6,c=4b2=20,椭圆的方程是故选B【点评】本题考查椭圆的定义,注意椭圆的定义中要检验两个线段的大小,看能不能构成椭圆,本题是一个易错题,容易忽略掉不合题意的点7 【答案】C【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(1)n+1,绝对值为3n2,故通项公式an=(1)n+1(3n2)故选:C8 【答案】A【解析】解:z=2i,=,=10=4+2i,故选:A【点评】本题考查复数的运算,注意解题方法的积累,属于基础题9 【答案】B【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),=(2,0,1),=(2,2,0),设异面直线BE与AC所成角为,则cos=故选:B10【答案】B 【解析】试题分析:因为,所以,故选B. 考点:1、对数函数的性质及不等式的解法;2、集合交集的应用.11【答案】D考点:由的部分图象确定其解析式;函数的图象变换12【答案】B【解析】解:A选项中,两个平面可以相交,l与交线平行即可,故不正确;B选项中,垂直于同一平面的两个平面平行,正确;C选项中,直线与直线相交、平行、异面都有可能,故不正确;D中选项也可能相交故选:B【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础二、填空题13【答案】x|x1或x0 【解析】解:即即x(x1)0解得x1或x0故答案为x|x1或x0【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法注意不等式的解以解集形式写出14【答案】 【解析】解:函数y=sinx是非奇非偶函数;函数y=sinx的周期与y=sinx的周期相同,故是周期为2的周期函数;函数y=sinx的取值是1,0,1,故y=sinxcosx不存在零点;函数数y=sinx、y=cosx的取值是1,0,1,故y=sinx+cosx的值域是2,1,0,1故答案为:【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键15【答案】+=1 【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,圆C:(x+4)2+y2=100的圆心为C(4,0),半径R=10,由动圆B与圆C相内切,可得|CB|=Rr=10|BD|,圆B经过点A(4,0),|BD|=|BA|,得|CB|=10|BA|,可得|BA|+|BC|=10,|AC|=810,点B的轨迹是以A、C为焦点的椭圆,设方程为(ab0),可得2a=10,c=4,a=5,b2=a2c2=9,得该椭圆的方程为+=1故答案为: +=116【答案】 【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为: =剩下的凸多面体的体积是1=故答案为:【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力17【答案】 【解析】解:x(1,2时,f(x)=2xf(2)=0f(1)=f(2)=0f(2x)=2f(x),f(2kx)=2kf(x)f(2m)=f(22m1)=2f(2m1)=2m1f(2)=0,故正确;设x(2,4时,则x(1,2,f(x)=2f()=4x0若x(4,8时,则x(2,4,f(x)=2f()=8x0一般地当x(2m,2m+1),则(1,2,f(x)=2m+1x0,从而f(x)0,+),故正确;由知当x(2m,2m+1),f(x)=2m+1x0,f(2n+1)=2n+12n1=2n1,假设存在n使f(2n+1)=9,即2n1=9,2n=10,nZ,2n=10不成立,故错误;由知当x(2k,2k+1)时,f(x)=2k+1x单调递减,为减函数,若(a,b)(2k,2k+1)”,则“函数f(x)在区间(a,b)上单调递减”,故正确故答案为:18【答案】【解析】(2ab)a(2,2t)(1,1)21(2t)(1)4t2,t2.答案:2三、解答题19【答案】 【解析】解:(1)把直线y=x+m代入椭圆方程得:x2+4(x+m)2=4,即:5x2+8mx+4m24=0,=(8m)245(4m24)=16m2+80=0解得:m=(2)设该直线与椭圆相交于两点A(x1,y1),B(x2,y2),则x1,x2是方程5x2+8mx+4m24=0的两根,由韦达定理可得:x1+x2=,x1x2=,|AB|=2;m=【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题20【答案】 【解析】解:(1)函数f(x)=1+=,(2)函数的图象如图:(3)函数值域为:1,3)21【答案】 【解析】解:(1)设M(x1,y1),N(x2,y2),则x1+x2=8p,|MF|=x1+,|NF|=x2+,|MF|+|NF|=x1+x2+p=8;(2)p=2时,y2=4x,若直线MN斜率不存在,则B(3,0);若直线MN斜率存在,设A(3,t)(t0),M(x1,y1),N(x2,y2),则代入利用点差法,可得y12y22=4(x1x2)kMN=,直线MN的方程为yt=(x3),B的横坐标为x=3,直线MN代入y2=4x,可得y22ty+2t212=00可得0t212,x=3(3,3),点B横坐标的取值范围是(3,3)【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题22【答案】 【解析】解:(1)因为f(1)=a=,所以f(x)=,所以,a2=f(2)cf(1)c=,a3=f(3)cf(2)c=因为数列an是等比数列,所以,所以c=1又公比q=,所以;由题意可得: =,又因为bn0,所以;所以数列是以1为首项,以1为公差的等差数列,并且有;当n2时,bn=SnSn1=2n1;所以bn=2n1(2)因为数列前n项和为Tn,所以 =;因为当m1,1时,不等式恒成立,所以只要当m1,1时,不等式t22mt0恒成立即可,设g(m)=2tm+t2,m1,1,所以只要一次函数g(m)0在m1,1上恒成立即可,所以,解得t2或t2,所以实数t的取值范围为(,2)(2,+)(3)T1,Tm,Tn成等比数列,得Tm2=T1Tn,结合1mn知,m=2,n=12【点评】本题综合考查数列、不等式与函数的有关知识,解决此类问题的关键是熟练掌握数列求通项公式与求和的方法,以及把不等式恒成立问题转化为函数求最值问题,然后利用函数的有关知识解决问题23【答案】 【解析】解:(1)如图(2)它
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 屋面坡改平施工方案
- 馒头加工厂施工方案
- 棋艺运动会活动方案策划
- 社会网络与语言保护-洞察及研究
- 移动支付安全事件案例分析与教训总结-洞察及研究
- 花冠营销方案
- 白猫肝脏纤维化代谢物标志物筛选-洞察及研究
- 分布式进程同步新范式-洞察及研究
- 肥肠营销方案
- 营销方案竞标
- 教育培训机构合作培训协议
- 苹果电脑macOS效率手册
- 职称英语A级词汇大全
- 某光伏发电工程EPC总承包投标文件技术文件
- (正式版)JBT 2603-2024 电动悬挂起重机
- JJG(交通) 133-2023 落锤式弯沉仪
- 工厂主管人员值班表
- 消防安全周巡查记录表
- 第三章 护理伦理学基本原则规范和范畴
- 能源化学与能源化工概论-第一章 能源简介
- FZ/T 52058-2021低熔点聚乳酸(LMPLA)/聚乳酸(PLA)复合短纤维
评论
0/150
提交评论