靖安县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第1页
靖安县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第2页
靖安县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第3页
靖安县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第4页
靖安县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

靖安县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级_ 座号_ 姓名_ 分数_一、选择题1 连续抛掷两次骰子得到的点数分别为m和n,记向量=(m,n),向量=(1,2),则的概率是( )ABCD2 下列函数在其定义域内既是奇函数又是增函数的是()A B C D3 已知是虚数单位,若复数()的实部与虚部相等,则( )A B C D 4 函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,则的一个可能取值是( )A2B3C7D95 设函数对一切实数都满足,且方程恰有6个不同的实根,则这6个实根的和为( )A. B. C. D.【命题意图】本题考查抽象函数的对称性与函数和方程等基础知识,意在考查运算求解能力.6 已知命题p:存在x00,使21,则p是( )A对任意x0,都有2x1B对任意x0,都有2x1C存在x00,使21D存在x00,使217 在ABC中,内角A,B,C所对的边分别为a,b,c,若sinB=2sinC,a2c2=3bc,则A等于( )A30B60C120D1508 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A至少有一个白球;都是白球B至少有一个白球;至少有一个红球C恰有一个白球;一个白球一个黑球D至少有一个白球;红、黑球各一个9 已知圆过定点且圆心在抛物线上运动,若轴截圆所得的弦为,则弦长等于( )A2 B3 C4 D与点位置有关的值【命题意图】本题考查了抛物线的标准方程、圆的几何性质,对数形结合能力与逻辑推理运算能力要求较高,难度较大.10圆()与双曲线的渐近线相切,则的值为( )A B C D【命题意图】本题考查圆的一般方程、直线和圆的位置关系、双曲线的标准方程和简单几何性质等基础知识,意在考查基本运算能力11定义运算,例如若已知,则=( )ABCD12设偶函数f(x)在(0,+)上为减函数,且f(2)=0,则不等式0的解集为( )A(2,0)(2,+)B(,2)(0,2)C(,2)(2,+)D(2,0)(0,2)二、填空题13已知函数y=f(x),xI,若存在x0I,使得f(x0)=x0,则称x0为函数y=f(x)的不动点;若存在x0I,使得f(f(x0)=x0,则称x0为函数y=f(x)的稳定点则下列结论中正确的是(填上所有正确结论的序号),1是函数g(x)=2x21有两个不动点;若x0为函数y=f(x)的不动点,则x0必为函数y=f(x)的稳定点;若x0为函数y=f(x)的稳定点,则x0必为函数y=f(x)的不动点;函数g(x)=2x21共有三个稳定点;若函数y=f(x)在定义域I上单调递增,则它的不动点与稳定点是完全相同14函数()满足且在上的导数满足,则不等式的解集为 .【命题意图】本题考查利用函数的单调性解抽象不等式问题,本题对运算能力、化归能力及构造能力都有较高要求,难度大.15定义在上的可导函数,已知的图象如图所示,则的增区间是 xy121O16已知=1bi,其中a,b是实数,i是虚数单位,则|abi|=17台风“海马”以25km/h的速度向正北方向移动,观测站位于海上的A点,早上9点观测,台风中心位于其东南方向的B点;早上10点观测,台风中心位于其南偏东75方向上的C点,这时观测站与台风中心的距离AC等于km18圆上的点(2,1)关于直线x+y=0的对称点仍在圆上,且圆与直线xy+1=0相交所得的弦长为,则圆的方程为三、解答题19实数m取什么数值时,复数z=m+1+(m1)i分别是:(1)实数?(2)虚数?(3)纯虚数?20(本小题满分12分)两个人在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个盒中的球数.(1)求,的概率;(2)记,求随机变量的概率分布列和数学期望.【命题意图】本题考查频离散型随机变量及其分布列等基础知识,意在考查学生的统计思想和基本的运算能力21已知f()=x1(1)求f(x);(2)求f(x)在区间2,6上的最大值和最小值 22全集U=R,若集合A=x|3x10,B=x|2x7,(1)求AB,(UA)(UB); (2)若集合C=x|xa,AC,求a的取值范围23已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由24若函数f(x)=ax(a0,且a1)在1,2上的最大值比最小值大,求a的值靖安县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1 【答案】A【解析】解:因为抛掷一枚骰子有6种结果,设所有连续抛掷两次骰子得到的点数为(m,n),有36种可能,而使的m,n满足m=2n,这样的点数有(2,1),(4,2),(6,3)共有3种可能;由古典概型公式可得的概率是:;故选:A【点评】本题考查古典概型,考查用列举法得到满足条件的事件数,是一个基础题2 【答案】B【解析】【知识点】函数的单调性与最值函数的奇偶性【试题解析】若函数是奇函数,则故排除A、D;对C:在(-和(上单调递增,但在定义域上不单调,故C错;故答案为:B3 【答案】A考点:复数运算4 【答案】C【解析】解:函数f(x)=sinx+acosx(a0,0)在x=处取最小值2,sin+acos=2,a=,f(x)=sinx+cosx=2sin(x+)再根据f()=2sin(+)=2,可得+=2k+,kZ,=12k+7,k=0时,=7,则的可能值为7,故选:C【点评】本题主要考查三角恒等变换,正弦函数的图象的对称性,属于基础题5 【答案】A.【解析】,的图象关于直线对称,个实根的和为,故选A.6 【答案】A【解析】解:命题p:存在x00,使21为特称命题,p为全称命题,即对任意x0,都有2x1故选:A7 【答案】C【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2c2=3bc,可得a2=7c2,所以cosA=,0A180,A=120故选:C【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查8 【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题9 【答案】A【解析】过作垂直于轴于,设,则,在中,为圆的半径,为的一半,因此又点在抛物线上,.10【答案】C11【答案】D【解析】解:由新定义可得, =故选:D【点评】本题考查三角函数的化简求值,考查了两角和与差的三角函数,是基础题12【答案】B【解析】解:f(x)是偶函数f(x)=f(x)不等式,即也就是xf(x)0当x0时,有f(x)0f(x)在(0,+)上为减函数,且f(2)=0f(x)0即f(x)f(2),得0x2;当x0时,有f(x)0x0,f(x)=f(x)f(2),x2x2综上所述,原不等式的解集为:(,2)(0,2)故选B二、填空题13【答案】 【解析】解:对于,令g(x)=x,可得x=或x=1,故正确;对于,因为f(x0)=x0,所以f(f(x0)=f(x0)=x0,即f(f(x0)=x0,故x0也是函数y=f(x)的稳定点,故正确;对于,g(x)=2x21,令2(2x21)21=x,因为不动点必为稳定点,所以该方程一定有两解x=,1,由此因式分解,可得(x1)(2x+1)(4x2+2x1)=0还有另外两解,故函数g(x)的稳定点有,1,其中是稳定点,但不是不动点,故错误;对于,若函数y=f(x)有不动点x0,显然它也有稳定点x0;若函数y=f(x)有稳定点x0,即f(f(x0)=x0,设f(x0)=y0,则f(y0)=x0即(x0,y0)和(y0,x0)都在函数y=f(x)的图象上,假设x0y0,因为y=f(x)是增函数,则f(x0)f(y0),即y0x0,与假设矛盾;假设x0y0,因为y=f(x)是增函数,则f(x0)f(y0),即y0x0,与假设矛盾;故x0=y0,即f(x0)=x0,y=f(x)有不动点x0,故正确故答案为:【点评】本题考查命题的真假的判断,新定义的应用,考查分析问题解决问题的能力14【答案】【解析】构造函数,则,说明在上是增函数,且.又不等式可化为,即,解得.不等式的解集为.15【答案】(,2)【解析】试题分析:由,所以的增区间是(,2)考点:函数单调区间16【答案】 【解析】解:=1bi,a=(1+i)(1bi)=1+b+(1b)i,解得b=1,a=2|abi|=|2i|=故答案为:【点评】本题考查了复数的运算法则、模的计算公式,考查了计算能力,属于基础题17【答案】25 【解析】解:由题意,ABC=135,A=7545=30,BC=25km,由正弦定理可得AC=25km,故答案为:25【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键18【答案】(x1)2+(y+1)2=5 【解析】解:设所求圆的圆心为(a,b),半径为r,点A(2,1)关于直线x+y=0的对称点A仍在这个圆上,圆心(a,b)在直线x+y=0上,a+b=0,且(2a)2+(1b)2=r2;又直线xy+1=0截圆所得的弦长为,且圆心(a,b)到直线xy+1=0的距离为d=,根据垂径定理得:r2d2=,即r2()2=;由方程组成方程组,解得;所求圆的方程为(x1)2+(y+1)2=5故答案为:(x1)2+(y+1)2=5三、解答题19【答案】 【解析】解:(1)当m1=0,即m=1时,复数z是实数;(2)当m10,即m1时,复数z是虚数;(3)当m+1=0,且m10时,即m=1时,复数z 是纯虚数【点评】本题考查复数的概念,属于基础题20【答案】【解析】(1)由,知,甲、乙、丙3个盒中的球数分别为0,1,2,此时的概率.(4分)21【答案】 【解析】解:(1)令t=,则x=,f(t)=,f(x)=(x1)(2)任取x1,x22,6,且x1x2,f(x1)f(x2)=,2x1x26,(x11)(x21)0,2(x2x1)0,f(x1)f(x2)0,f(x)在2,6上单调递减,当x=2时,f(x)max=2,当x=6时,f(x)min= 22【答案】 【解析】解:(1)A=x|3x10,B=x|2x7,AB=3,7;AB=(2,10);(CUA)(CUB)=(,3)10,+);(2)集合C=x|xa,若AC,则a3,即a的取值范围是a|a323【答案】 【解析】解:(1)依题意,可设椭圆C的方程为(a0,b0),且可知左焦点为F(2,0),从而有,解得c=2,a=4,又a2=b2+c2,所以b2=12,故椭圆C的方程为(2)假设存在符合题意的直线l,其方程为y=x+t,由得3x2+3tx+t212=0,因为直线l与椭圆有公共点,所以有=(3t)243(t212)0,解得4t4,另一方面,由直线OA与l的距离4=,从而t=2,由于24,4,所以符合题意

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论