临县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第1页
临县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第2页
临县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第3页
临县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第4页
临县第二中学校2018-2019学年上学期高二数学12月月考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精选高中模拟试卷临县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级_ 姓名_ 分数_一、选择题1 若双曲线=1(a0,b0)的渐近线与圆(x2)2+y2=2相切,则此双曲线的离心率等于( )ABCD22 在“唱响内江”选拔赛中,甲、乙两位歌手的5次得分情况如茎叶图所示,记甲、乙两人的平均得分分别、,则下列判断正确的是( )A,乙比甲成绩稳定B,甲比乙成绩稳定C,甲比乙成绩稳定D,乙比甲成绩稳定3 如图,四面体DABC的体积为,且满足ACB=60,BC=1,AD+=2,则四面体DABC中最长棱的长度为( )AB2CD34 已知平面向量=(1,2),=(2,m),且,则=( )A(5,10)B(4,8)C(3,6)D(2,4)5 如图,网格纸上正方形小格的边长为1,图中粗线画出的是某几何体的三视图,则几何体的体积为( )A. B. C. 1 D. 【命题意图】本题考查空间几何体的三视图,几何体的体积等基础知识,意在考查学生空间想象能力和计算能力6 如图,该程序运行后输出的结果为( )A7B15C31D637 已知f(x)=2sin(x+)的部分图象如图所示,则f(x)的表达式为( )ABCD8 设集合S=|x|x1或x5,T=x|axa+8,且ST=R,则实数a的取值范围是( )A3a1B3a1Ca3或a1Da3或a19 若曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=( )A1B2C3D410复数i1(i是虚数单位)的虚部是( )A1B1CiDi11函数存在与直线平行的切线,则实数的取值范围是( )A. B. C. D. 【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力12已知双曲线C:=1(a0,b0)的左、右焦点分别为F1,F2,过点F1作直线lx轴交双曲线C的渐近线于点A,B若以AB为直径的圆恰过点F2,则该双曲线的离心率为( )ABC2D二、填空题13开始输出结【 解析】由已知圆心在直线上,所以圆心,又因为与圆外切于原点,且半径为,可求得,舍去。所以圆的标准方程为束是否与圆外切于原点,且半径为 的圆的标准方程为 14函数y=f(x)的图象在点M(1,f(1)处的切线方程是y=3x2,则f(1)+f(1)=15抛物线y2=8x上到焦点距离等于6的点的坐标是16某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)17设,则的最小值为 。18设等差数列an的前n项和为Sn,若1a31,0a63,则S9的取值范围是三、解答题19已知函数f(x)=cosx(sinx+cosx)(1)若0,且sin=,求f()的值;(2)求函数f(x)的最小正周期及单调递增区间20 坐标系与参数方程线l:3x+4y12=0与圆C:(为参数 )试判断他们的公共点个数 21已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由22在直角坐标系xOy中,过点P(2,1)的直线l的倾斜角为45以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为sin2=4cos,直线l和曲线C的交点为A,B(1)求曲线C的直角坐标方程; (2)求|PA|PB| 23提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20x200时,车流速度v是车流密度x的一次函数()当0x200时,求函数v(x)的表达式;()当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=xv(x)可以达到最大,并求出最大值(精确到1辆/小时) 24已知等差数列满足:=2,且,成等比数列。(1) 求数列的通项公式。(2)记为数列的前n项和,是否存在正整数n,使得若存在,求n的最小值;若不存在,说明理由.临县第二中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1 【答案】B【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,圆(x2)2+y2=2的圆心(2,0),半径为,双曲线=1(a0,b0)的渐近线与圆(x2)2+y2=2相切,可得:,可得a2=b2,c=a,e=故选:B【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力2 【答案】A【解析】解:由茎叶图可知=(77+76+88+90+94)=,=(75+86+88+88+93)=86,则,乙的成绩主要集中在88附近,乙比甲成绩稳定,故选:A【点评】本题主要考查茎叶图的应用,根据平均数和数据的稳定性是解决本题的关键3 【答案】 B【解析】解:因为AD(BCACsin60)VDABC=,BC=1,即AD1,因为2=AD+2=2,当且仅当AD=1时,等号成立,这时AC=,AD=1,且AD面ABC,所以CD=2,AB=,得BD=,故最长棱的长为2故选B【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题4 【答案】B【解析】解:排除法:横坐标为2+(6)=4,故选B5 【答案】D【解析】6 【答案】如图,该程序运行后输出的结果为( )D【解析】解:因为A=1,s=1判断框内的条件15成立,执行s=21+1=3,i=1+1=2;判断框内的条件25成立,执行s=23+1=7,i=2+1=3;判断框内的条件35成立,执行s=27+1=15,i=3+1=4;判断框内的条件45成立,执行s=215+1=31,i=4+1=5;判断框内的条件55成立,执行s=231+1=63,i=5+1=6;此时65,判断框内的条件不成立,应执行否路径输出63,所以输入的m值应是5故答案为5【点评】本题考查了程序框图中的当型循环结构,当型循环是先判断后执行,满足条件进入循环,不满足条件,算法结束7 【答案】 B【解析】解:函数的周期为T=,=又函数的最大值是2,相应的x值为=,其中kZ取k=1,得=因此,f(x)的表达式为,故选B【点评】本题以一个特殊函数求解析式为例,考查由y=Asin(x+)的部分图象确定其解析式、三角函数的图象与性质,周期与相位等概念,属于基础题8 【答案】A【解析】解:S=|x|x1或x5,T=x|axa+8,且ST=R,解得:3a1故选:A【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题9 【答案】A【解析】解:f(x)=acosx,g(x)=x2+bx+1,f(x)=asinx,g(x)=2x+b,曲线f(x)=acosx与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,f(0)=a=g(0)=1,且f(0)=0=g(0)=b,即a=1,b=0a+b=1故选:A【点评】本题考查利用导数研究曲线上某点的切线方程,函数在某点处的导数,就是曲线上过该点的切线的斜率,是中档题10【答案】A【解析】解:由复数虚部的定义知,i1的虚部是1,故选A【点评】该题考查复数的基本概念,属基础题11【答案】D【解析】因为,直线的的斜率为,由题意知方程()有解,因为,所以,故选D12【答案】D【解析】解:设F1(c,0),F2(c,0),则l的方程为x=c,双曲线的渐近线方程为y=x,所以A(c, c)B(c, c)AB为直径的圆恰过点F2F1是这个圆的圆心AF1=F1F2=2cc=2c,解得b=2a离心率为=故选D【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式二、填空题13【答案】 【解析】由已知圆心在直线上,所以圆心,又因为与圆外切于原点,且半径为,可求得,舍去。所以圆的标准方程为14【答案】4 【解析】解:由题意得f(1)=3,且f(1)=312=1所以f(1)+f(1)=3+1=4故答案为4【点评】本题主要考查导数的几何意义,要注意分清f(a)与f(a)15【答案】(4,) 【解析】解:抛物线方程为y2=8x,可得2p=8, =2抛物线的焦点为F(2,0),准线为x=2设抛物线上点P(m,n)到焦点F的距离等于6,根据抛物线的定义,得点P到F的距离等于P到准线的距离,即|PF|=m+2=6,解得m=4,n2=8m=32,可得n=4,因此,点P的坐标为(4,)故答案为:(4,)【点评】本题给出抛物线的方程,求抛物线上到焦点的距离等于定长的点的坐标着重考查了抛物线的定义与标准方程等知识,属于基础题16【答案】, 无【解析】【知识点】等比数列【试题解析】设该病人第n次服药后,药在体内的残留量为毫克,所以)=300,=350由,所以是一个等比数列,所以所以若该患者坚持长期服用此药无明显副作用。故答案为:, 无 17【答案】9【解析】由柯西不等式可知18【答案】(3,21) 【解析】解:数列an是等差数列,S9=9a1+36d=x(a1+2d)+y(a1+5d)=(x+y)a1+(2x+5y)d,由待定系数法可得,解得x=3,y=633a33,06a618,两式相加即得3S921S9的取值范围是(3,21)故答案为:(3,21)【点评】本题考查了等差数列的通项公式和前n项和公式及其“待定系数法”等基础知识与基本技能方法,属于中档题三、解答题19【答案】 【解析】解:(1)0,且sin=,cos=,f()=cos(sin+cos),=(+)=(2)f(x)=cosx(sinx+cosx)=sinxcosx+cos2x=sin2x+cos2x=sin(2x+),T=,由2k2x+2k+,kZ,得kxk+,kZ,f(x)的单调递增区间为k,k+,kZ20【答案】 【解析】解:圆C:的标准方程为(x+1)2+(y2)2=4由于圆心C(1,2)到直线l:3x+4y12=0的距离d=2故直线与圆相交故他们的公共点有两个【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键 21【答案】 【解析】解:(1)依题意,可设椭圆C的方程为(a0,b0),且可知左焦点为F(2,0),从而有,解得c=2,a=4,又a2=b2+c2,所以b2=12,故椭圆C的方程为(2)假设存在符合题意的直线l,其方程为y=x+t,由得3x2+3tx+t212=0,因为直线l与椭圆有公共点,所以有=(3t)243(t212)0,解得4t4,另一方面,由直线OA与l的距离4=,从而t=2,由于24,4,所以符合题意的直线l不存在【点评】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想22【答案】 【解析】(1)sin2=4cos,2sin2=4cos,cos=x,sin=y,曲线C的直角坐标方程为y2=4x (2)直线l过点P(2,1),且倾斜角为45l的参数方程为(t为参数)代入 y2=4x 得t26t14=0设点A,B对应的参数分别t1,t2t1t2=14|PA|PB|=14 23【答案】 【解析】解:() 由题意:当0x20时,v(x)=60;当20x200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为()依题并由()可得当0x20时,f(x)为增函数,故当x=20时,其最大值为6020=1200当20x200时,当且仅当x=200x,即x=100时,等号成立所以,当x=100时,f(x)在区间(20,200上取得最大值综上所述,当x=100时,f(x)在区间0,200上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时答:() 函数v(x)的表达式() 当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时 24【答案】见解析。【解析】(1)设数列an的公差为d,依题意,2,2+d,2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论